Абстрактная теория групп - (реферат) Абстрактная теория групп - (реферат)
Абстрактная теория групп - (реферат) РЕФЕРАТЫ РЕКОМЕНДУЕМ  
 
Тема
 • Главная
 • Авиация
 • Астрономия
 • Безопасность жизнедеятельности
 • Биографии
 • Бухгалтерия и аудит
 • География
 • Геология
 • Животные
 • Иностранный язык
 • Искусство
 • История
 • Кулинария
 • Культурология
 • Лингвистика
 • Литература
 • Логистика
 • Математика
 • Машиностроение
 • Медицина
 • Менеджмент
 • Металлургия
 • Музыка
 • Педагогика
 • Политология
 • Право
 • Программирование
 • Психология
 • Реклама
 • Социология
 • Страноведение
 • Транспорт
 • Физика
 • Философия
 • Химия
 • Ценные бумаги
 • Экономика
 • Естествознание




Абстрактная теория групп - (реферат)

Дата добавления: март 2006г.

    Абстрактная теория групп
    I. Понятие абстрактной группы.
    1. Понятие алгебраической операции.

Говорят, что на множестве X определена алгебраическая операция (*), если каждой упорядоченной паре элементов поставлен в соответствие некоторый элемент называемый их произведением. Примеры.

Композиция перемещений на множествах является алгебраической операцией. Композиция подстановок является алгебраической операцией на множестве всех подстановок степени n. Алгебраическими операциями будут и обычные операции сложения, вычитания и умножения на множествахсоответственно целых, вещественных и комплексных чисел. Операция деления не будет алгебраической операцией на этих множествах, поскольку частное не определено при . Однако на множествах , это будет алгебраическая операция. Сложение векторов является алгебраической операцией на множестве . Векторное произведение будет алгебраической операцией на множестве . Умножение матриц будет алгебраической операцией на множестве всех квадратных матриц данного порядка.

    2. Свойства алгебраических операций.
    Операция (*) называется ассоциативной, если .

Это свойство выполняется во всех приведенных выше примерах, за исключением операций вычитания ( и деления) и операции векторного умножения векторов. Наличие свойства ассоциативности позволяет определить произведение любого конечного множества элементов. Например, если, . В частности можно определить степени с натуральным показателем: . При этом имеют место обычные законы: , . 2. Операция (*) называется коммутативной, если

В приведенных выше примерах операция коммутативна в примерах 3 и 4 и не коммутативна в остальных случаях. Отметим, что для коммутативной операции Элемент называется нейтральным для алгебраической операции (*) на множестве X, если . В примерах 1-6 нейтральными элементами будут соответственно тождественное перемещение, тождественная перестановка, числа 0 и 1 для сложения и умножения соответственно (для вычитания нейтральный элемент отсутствует ! ), нулевой вектор, единичная матрица. Для векторного произведения нейтральный элемент отсутствует. Отметим, что нейтральный элемент (если он существует) определен однозначно. В самом деле, если - нейтральные элементы, то . Наличие нейтрального элемента позволяет определить степень с нулевым показателем: .

Допустим, что для операции (*) на X существует нейтральный элемент. Элемент называется обратным для элемента , если . Отметим, что по определению . Все перемещения обратимы также как и все подстановки. Относительно операции сложения все числа обратимы, а относительно умножения обратимы все числа, кроме нуля. Обратимые матрицы - это в точности все матрицы с ненулевым определителем. Если элемент x обратим, то определены степени с отрицательным показателем: . Наконец, отметим, что если x и y обратимы, то элемент также обратим и . (Сначала мы одеваем рубашку, а потом куртку; раздеваемся же в обратном порядке! ).

    Определение (абстрактной) группы.

Пусть на множестве G определена алгебраическая операция (*). (G , *) называется группой, если

    Операция (*) ассоциативна на G.

Для этой операции существует нейтральный элемент e (единица группы). Каждый элемент из G обратим.

    Примеры групп.
    Любая группа преобразований.
    (Z, +), (R, +), (C, +).

Матричные группы: - невырожденные квадратные матрицы порядка n, ортогональные матрицы того же порядка, ортогональные матрицы с определителем 1.

    3. Простейшие свойства групп.

В любой группе выполняется закон сокращения: (левый закон сокращения; аналогично, имеет место и правый закон). Доказательство. Домножим равенство слева на и воспользуемся свойством ассоциативности: . Признак нейтрального элемента:

    Доказательство Применим к равенству закон сокращения.
    Признак обратного элемента:
    Доказательство: Применим закон сокращения к равенству .

Единственность обратного элемента. Обратный элемент определен однозначно. Следует из п. 3.

Существование обратной операции. Для любых двух элементов произвольной группы G уравнение имеет и притом единственное решение. Доказательство Непосредственно проверяется, что(левое частное элементов ) является решением указанного уравнения. Единственность вытекает из закона сокращения, примененного к равенству. Аналогично устанавливается существование и единственность правого частного.

    4. Изоморфизм групп.
    Определение.

Отображение двух групп G и K называется изоморфизмом , если 1. Отображение jвзаимно однозначно. 2. Отображениеj сохраняет операцию: . Поскольку отображение обратное к jтакже является изоморфизмом, введенное понятие симметрично относительно групп G и K , которые называются изоморфными.

    Примеры.

1. Группы поворотов плоскости и вокруг точек и изоморфны между собой. Аналогично, изоморфными будут и группы, состоящие из поворотов пространства относительно любых двух осей.

2. Группа диэдра и соответствующая пространственная группа изоморфны. Группа тетраэдра T изоморфна группе состоящей из четных подстановок четвертой степени. Для построения изоморфизма достаточно занумеровать вершины тетраэдра цифрами 1, 2, 3, 4 и заметить, что каждый поворот, совмещающий тетраэдр с собой некоторым образом переставляет его вершины и, следовательно, задает некоторую подстановку множества{1, 2, 3, 4} Повороты вокруг оси, проходящей через некоторую вершину (например 1), оставляет символ 1 на месте и циклически переставляет символы 1, 2, 3. Все такие перестановки - четные. Поворот вокруг оси, соединяющей середины ребер (например, 12 и 34 ) переставляет символы 1 и 2 , а также 3 и 4. Такие перестановки также являются четными.

Формула определяет взаимно однозначное соответствие между множеством R вещественных чисел и множеством положительных чисел. При этом . Это означает, что является изоморфизмом. Замечание. В абстрактной алгебре изоморфные группы принято считать одинаковыми. По существу это означает, что игнорируются индивидуальные свойства элементов группы и происхождение алгебраической операции.

    5. Понятие подгруппы.

Непустое подмножество называется подгруппой, если само является группой. Более подробно это означает, что , и . Признак подгруппы.

Непустое подмножество будет подгруппой тогда и только тогда, когда . Доказательство.

В одну сторону это утверждение очевидно. Пусть теперь - любой элемент. Возьмем в признаке подгруппы. Тогда получим . Теперь возьмем . Тогда получим . Примеры подгрупп.

Для групп преобразований новое и старое понятие подгруппы равносильны между собой.

    - подгруппа четных подстановок.
    и т. д.

Пусть G - любая группа и - любой фиксированный элемент. Рассмотрим множество всевозможных степеней этого элемента. Поскольку , рассматриваемое множество является подгруппой. Она называется циклической подгруппой с образующим элементом g . Пусть любая подгруппа Рассмотрим множество - централизатор подгруппы H в группе G. Из определения вытекает, что если , то , то есть . Теперь ясно, что если , то и и значит централизатор является подгруппой. Если группа G коммутативна, то . Если G=H, то централизатор состоит из тех элементов, которые перестановочны со всеми элементами группы; в этом случае он называетсяцентром группы G и обозначается Z(G). Замечание об аддитивной форме записи группы.

Иногда, особенно когда операция в группе коммутативна, она обозначается (+) и называется сложением. В этом случае нейтральный элемент называется нулем и удовлетворяет условию: g+0=g. Обратный элемент в этом случае называется противоположным и обозначается (-g). Степени элемента g имеют вид g+g+.... +g , называются кратными элемента g и обозначаются ng.

6. Реализация абстрактной группы как группы преобразований. Существует несколько способов связать с данной абстрактной группой некоторую группу преобразований. В дальнейшем, если не оговорено противное, знак алгебраической операции в абстрактной группе будет опускаться. Пусть некоторая подгруппа.

А) Для каждого определим отображение (левый сдвиг на элемент h) формулой . Теорема 1

Множество L(H, G)= является группой преобразований множества G. Соответствие: является изоморфизмом групп H и L(H, G).

    Доказательство.

Надо проверить, что отображение взаимно однозначно для всякого . Если , то по закону сокращения. Значит инъективно. Если любой элемент, то и так что к тому же и сюръективно. Обозначим через · операцию композиции в группе Sym(G) взаимно однозначных отображений . Надо проверить, что и . Пусть любой элемент. Имеем: ; и значит, . Пусть . Надо проверить, что l взаимно однозначно и сохраняет операцию. По построению l сюръективно. Инъективность вытекает из закона правого сокращения: . Сохранение операции фактически уже было установлено выше: . Следствие.

Любая абстрактная группа изоморфна группе преобразований некоторого множества (Достаточно взять G=H и рассмотреть левые сдвиги).

    Для случая конечных групп получается теорема Кэли:

Любая группа из n элементов изоморфна подгруппе группы подстановок степени n. Для каждого определим отображение (правый сдвиг на элемент h) формулой . Теорема B.

    .
    Множество является группой преобразований множества G.
    Соответствие является изоморфизмом групп H и R(H, G).

Доказательство теоремы B вполне аналогично доказательству теоремы A. Отметим только, что . Именно поэтому в пункте 3 теоремы В появляется не , а . С) Для каждого определим (сопряжение или трансформация элементом h ) формулой . Теорема С.

Каждое отображение является изоморфизмом группы G с собой (автоморфизмом группы G). Множество является группой преобразований множества G.

    Отображение сюръективно и сохраняет операцию.
    Доказательство.

Поскольку , отображение взаимно однозначно как композиция двух отображений такого типа. Имеем: и потому сохраняет операцию. Надо проверить, что и . Оба равенства проверяются без труда. Сюръективность отображения имеет место по определению. Сохранение операции уже было проверено в пункте 2. Замечание об инъективности отображения q.

В общем случае отображение qне является инъективным. Например, если группа H коммутативна, все преобразования будут тождественными и группа тривиальна. Равенство означает, что или (1) В связи с этим удобно ввести следующее определение: множество называется централизатором подгруппы . Легко проверить, что централизатор является подгруппой H. Равенство (1) означает, что. Отсюда вытекает, что если централизатор подгруппы H в G тривиален, отображение q является изоморфизмом.

    Смежные классы; классы сопряженных элементов.

Пусть, как и выше, некоторая подгруппа. Реализуем H как группу L(H, G) левых сдвигов на группе G. Орбита называется левым смежным классом группы G по подгруппе H. Аналогично, рассматривая правые сдвиги, приходим к правым смежным классам. Заметим, что стабилизатор St(g, L(H, G)) (как и St(g, R(H, G)) ) тривиален поскольку состоит из таких элементов, что hg=g. Поэтому, если группа H конечна, то все левые и все правые смежные классы состоят из одинакового числа элементов, равного.

Орбиты группы называются классами сопряженных элементов группы G относительно подгруппы H и обозначаются Если G=H, говорят просто о классах сопряженных элементов группы G. Классы сопряженных элементов могут состоять из разного числа элементов . Это число равно, где Z(H, g) подгруппа H , состоящая из всех элементов h перестановочных с g. Пример.

Пусть - группа подстановок степени 3. Занумеруем ее элементы: =(1, 2, 3); =(1, 3, 2); =(2, 1, 3); =(2, 3, 1); =(3, 1, 2); =(3, 2, 1). Пусть . Легко проверить, что левые смежные классы суть: , , .

    Правые смежные классы:
    , , .
    Все эти классы состоят из 2 элементов.
    Классы сопряженных элементов G относительно подгруппы H:
    , , , .
    В то же время,
    , , .
    Теорема Лагранжа.

Пусть H подгруппа конечной группы G. Тогда порядок H является делителем порядка G.

    Доказательство.

По свойству орбит G представляется в виде объединения непересекающихся смежных классов: . Поскольку все смежные классы состоят из одинакового числа элементов, , откуда и вытекает теорема. Замечание. Число s левых (или правых) смежных классов называется индексом подгруппы . Следствие.

Две конечные подгруппы группы G порядки которых взаимно просты пересекаются только по нейтральному элементу.

В самом деле, если эти подгруппы, то их общая подгруппа и по теореме Лагранжа - общий делитель порядков H и K то есть 1.

    Нормальные подгруппы. Факторгруппы.

Пусть любая подгруппа и -любой элемент. Тогда также является подгруппой G притом изоморфной H, поскольку отображение сопряжения является изоморфизмом. Подгруппа называется сопряженной по отношению к подгруппе H. Определение.

Подгруппа H называется инвариантной или нормальной в группе G, если все сопряженные подгруппы совпадают с ней самой: . Равенство можно записать в виде Hg = gH и таким образом, подгруппа инвариантна в том и только в том случае, когда левые и правые смежные классы по этой подгруппе совпадают.

    Примеры.

В коммутативной группе все подгруппы нормальны, так как отображение сопряжения в такой группе тождественно.

В любой группе G нормальными будут , во первых, тривиальная подгруппа и, во вторых, вся группа G. Если других нормальных подгрупп нет, то G называетсяпростой.

В рассмотренной выше группе подгруппа не является нормальной так как левые и правые смежные классы не совпадают. Сопряженными с H будут подгруппы и .

Если - любая подгруппа, то ее централизатор Z = Z(H, G) - нормальная подгруппа в G , так как для всех ее элементов z. В частности, центр Z(G) любой группы G -нормальная подгруппа. Подгруппа H индекса 2 нормальна. В самом деле, имеем 2 смежных класса : H и Hg = G-H = gH.

Теорема (свойство смежных классов по нормальной подгруппе). Если подгруппа H нормальна в G, то множество всевозможных произведений элементов из двух каких либо смежных классов по этой подгруппе снова будет одним из смежных классов, то есть.

    Доказательство.
    Очевидно, что для любой подгруппы H . Но тогда
    = = = .

Таким образом, в случае нормальной подгруппы H определена алгебраическая операция на множестве смежных классов. Эта операция ассоциативна поскольку происходит из ассоциативного умножения в группе G. Нейтральным элементом для этой операции является смежный класс. Поскольку , всякий смежный класс имеет обратный. Все это означает, что относительно этой операции множество всех (левых или правых) смежных классов по нормальной подгруппе является группой. Она называетсяфакторгруппой группы G по H и обозначается G/H. Ее порядок равен индексу подгруппы H в G. 9 Гомоморфизм.

Гомоморфизм групп - это естественное обобщение понятия изоморфизма. Определение.

Отображение групп называется гомоморфизмом, если оно сохраняет алгебраическую операцию, то есть : . Таким образом, обобщение состоит в том, что вместо взаимно однозначных отображений, которые участвуют в определении изоморфизма, здесь допускаются любые отображения.

    Примеры.
    Разумеется, всякий изоморфизм является гомоморфизмом.
    Тривиальное отображение является гомоморфизмом.

Если - любая подгруппа, то отображение вложения будет инъективным гомоморфизмом. Пусть - нормальная подгруппа. Отображение группы G на факторгруппу G/H будет гомоморфизмом поскольку . Этот сюръективный гомоморфизм называется естественным. По теореме С предыдущего раздела отображение сопряжения сохраняет операцию и, следовательно является гомоморфизмом. Отображение , которое каждому перемещению n- мерного пространства ставит в соответствие ортогональный оператор (см. лекцию №3) является гомоморфизмом поскольку по теореме 4 той же лекции . Теорема (свойства гомоморфизма)

    Пусть - гомоморфизм групп, и - подгруппы. Тогда:
    , .
    - подгруппа.
    -подгруппа, причем нормальная, если таковой была .
    Доказательство.
    и по признаку нейтрального элемента . Теперь имеем: .

Пусть p = a(h) , q = a(k) . Тогда и . По признаку подгруппы получаем 2. Пусть то есть элементы p = a(h) , q = a(k) входят в . Тогда то есть . Пусть теперь подгруппа нормальна и - любой элемент. и потому . Определение.

Нормальная подгруппа называется ядром гомоморфизма . Образ этого гомоморфизма обозначается . Теорема.

    Гомоморфизм a инъективен тогда и только тогда, когда
    Доказательство.

Поскольку , указанное условие необходимо. С другой стороны, если , то и если ядро тривиально, и отображение инъективно. Понятие гомоморфизма тесно связано с понятием факторгруппы. Теорема о гомоморфизме.

Любой гомоморфизм можно представить как композицию естественного (сюръективного) гомоморфизма , изоморфизма и (инъективного) гомоморфизма (вложения подгруппы в группу): . Доказательство.

Гомоморфизмы p и i описаны выше (см. примеры) Построим изоморфизм j. Пусть . Элементами факторгруппы являются смежные классы Hg . Все элементы имеют одинаковые образы при отображении a: . Поэтому формула определяет однозначное отображение . Проверим сохранение операции . Поскольку отображение j очевидно сюръективно, остается проверить его инъективность. Если , то и потому . Следовательно, и по предыдущей теореме j инъективно. Пусть - любой элемент. Имеем : . Следовательно, .

    10 Циклические группы.

Пусть G произвольная группа и - любой ее элемент. Если некоторая подгруппа содержит g , то она содержит и все степени . С другой стороны, множество очевидно является подгруппой G . Определение.

Подгруппа Z(g) называется циклической подгруппой G с образующим элементом g. Если G = Z(g) , то и вся группа G называется циклической. Таким образом, циклическая подгруппа с образующим элементом g является наименьшей подгруппой G, содержащей элемент g.

    Примеры

Группа Z целых чисел с операцией сложения является циклической группой с образующим элементом 1.

Группа поворотов плоскости на углы кратные 2p¤n является циклической с образующим элементом - поворотом на угол 2p¤n. Здесь n = 1, 2, .... Теорема о структуре циклических групп.

Всякая бесконечная циклическая группа изоморфна Z. Циклическая группа порядка n изоморфна Z / nZ .

    Доказательство.

Пусть G = Z(g) - циклическая группа. По определению, отображение - сюръективно. По свойству степеней и потому j - гомоморфизм. По теореме о гомоморфизме . H = KerjМZ. Если H - тривиальная подгруппа, то . Если H нетривиальна, то она содержит положительные числа. Пусть n наименьшее положительное число входящее в H. Тогда nZМH. Предположим, что в H есть и другие элементы то есть целые числа не делящееся на n нацело и k одно из них. Разделим k на n с остатком: k = qn +r , где 0 < r < n. Тогда r = k - qnО H , что противоречит выбору n. Следовательно, nZ = H и теорема доказана. Отметим, что » Z / nZ .

    Замечание.

В процессе доказательства было установлено, что каждая подгруппа группы Z имеет вид nZ , где n = 0 , 1 , 2 , ....

    Определение.

Порядком элемента называется порядок соответствующей циклической подгруппы Z( g ) . Таким образом, если порядок g бесконечен, то все степени - различные элементы группы G. Если же этот порядок равен n, то элементы различны и исчерпывают все элементы из Z( g ), а N кратно n . Из теоремы Лагранжа вытекает, что порядок элемента является делителем порядка группы. Отсюда следует, что для всякого элемента g конечной группы G порядка n имеет место равенство.

    Следствие.

Если G - группа простого порядка p, то - циклическая группа. В самом деле, пусть - любой элемент отличный от нейтрального. Тогда его порядок больше 1 и является делителем p, следовательно он равен p. Но в таком случае G = Z( g )».

    Теорема о подгруппах конечной циклической группы.

Пусть G - циклическая группа порядка n и m - некоторый делитель n. Существует и притом только одна подгруппа HМG порядка m. Эта подгруппа циклична. Доказательство.

По предыдущей теореме G»Z / nZ. Естественный гомоморфизм устанавливает взаимно однозначное соответствие между подгруппами HМG и теми подгруппами KМZ , которые содержат Kerp= nZ . Но, как отмечалось выше, всякая подгруппа K группы Z имеет вид kZ Если kZЙnZ , то k - делитель n и p(k) - образующая циклической группы H порядка m = n /k. Отсюда и следует утверждение теоремы.

Верна и обратная теорема: если конечная группа G порядка n обладает тем свойством, что для всякого делителя m числа n существует и притом ровно одна подгруппа H порядка m, то G циклическая группа.

    Доказательство.

Будем говорить, что конечная группа G порядка N обладает свойством (Z), если для всякого делителя m числа N существует и притом только одна подгруппа HМG порядка m. Нам надо доказать, что всякая группа, обладающая свойством (Z) циклическая. Установим прежде всего некоторые свойства таких групп. Лемма.

    Если G обладает свойством (Z), то
    Любая подгруппа G нормальна.

Если x и y два элемента такой группы и их порядки взаимно просты, то xy = yx. Если H подгруппа порядка m такой группы G порядка N и числа m и N/m взаимно просты, то H обладает свойством (Z).

    Доказательство леммы.

1. Пусть HМG . Для любого подгруппа имеет тот же порядок, что и H. По свойству (Z) то есть подгруппа H нормальна. 2. Пусть порядок x равен p, а порядок y равен q. По пункту 1) подгруппы Z(x) и Z(y) нормальны. Значит, Z(x)y = yZ(x) и xZ(y) = Z(y)x и потому для некоторыхa и b . Следовательно, . Но, поскольку порядки подгрупп Z(x) и Z(y) взаимно просты, то . Следовательно, и потому xy = yx. Используя свойство (Z) , выберем в G подгруппу K порядка N/m. По 1) эта подгруппа нормальна, а поскольку порядки H и K взаимно просты, эти подгруппы пересекаются лишь по нейтральному элементу. Кроме того по 2) элементы этих подгрупп перестановочны между собой. Всевозможные произведения hk =kh, где hОH, kОK попарно различны, так как =e поскольку это единственный общий элемент этих подгрупп. Количество таких произведений равно m N/m = и, следовательно, они исчерпывают все элементы G. Сюръективное отображение является гомоморфизмом с ядром K. Пусть теперь число s является делителем m. Выберем в G подгруппу S порядка s. Поскольку s и N/m взаимно просты, и потому - подгруппа порядка s. Если бы подгрупп порядка s в H было несколько, то поскольку все они были бы и подгруппами G условие (Z) для G было бы нарушено. Тем самым мы проверили выполнение условия (S) для подгруппы H. Доказательство теоремы.

Пусть - разложение числа N в произведение простых чисел. Проведем индукцию по k. Пусть сначала k = 1, то есть. Выберем в G элемент x максимального порядка . Пусть y любой другой элемент этой группы. Его порядок равен , где u Ј s. Группы и имеют одинаковые порядки и по свойству (Z) они совпадают. Поэтому и мы доказали, что x - образующий элемент циклической группы G. Пусть теорема уже доказана для всех меньших значений k. Представим N в виде произведения двух взаимно простых множителей N = pq (например, ) . Пусть H и K подгруппы G порядка p и q. Использую 3) и предположение индукции , мы можем считать, что H = Z(x), K = Z(y), причем xy = yx . Элемент xy имеет порядок pq = N и, следовательно, является образующим элементом циклической группы G.

    11. Некоторые теоремы о подгруппах конечных групп.
    Теорема Коши.

Если порядок конечной группы делится на простое число p, то в ней имеется элемент порядка p.

Прежде чем переходить к доказательству этой теоремы, отметим, что если g№e и , где p - простое число, то порядок g равен p. В самом деле, если m - порядок g, то p делится на m, откуда m=1 или m=p. Первое из этих равенств невозможно по условиям выбора g.

Индукция , с помощью которой проводится доказательство теоремы, основана на следующей лемме

    Лемма.

Если некоторая факторгруппа G/H конечной группы G имеет элемент порядка p, то тем же свойством обладает и сама группа G.

    Доказательство леммы.

Пусть - элемент порядка p. Обозначим через m порядок элемента . Тогда и значит m делится на p. Но тогда - элемент порядка p. Доказательство теоремы Коши.

Зафиксируем простое число p и будем проводить индукцию по порядку n группы G. Если n=p, то G»Z/pZ и теорема верна. Пусть теорема уже доказана для всех групп порядка меньше n и, причем n делится на p.

    Рассмотрим последовательно несколько случаев

G содержит собственную ( то есть не совпадающую со всей группой и нетривиальную) подгруппу H , порядок которой делится на p. В этом случае порядок H меньше n и по предположению индукции имеется элемент порядка p. Поскольку в этом случае теорема доказана. G содержит собственную нормальную подгруппу. Если ее порядок делится на p, то по 1 теорема доказана. В противном случае на p делится порядок факторгруппы G/H и теорема в этом случае следует из доказанной выше леммы.

Если G - коммутативна, то возьмем любой . Если порядок g делится на p, то теорема доказана по 1, поскольку Z(g)МG. Если это не так, то , поскольку в коммутативной группе все подгруппы нормальны, теорема доказана по 2.

Остается рассмотреть случай, когда порядки всех собственных подгрупп G не делятся на p, группа G проста ( то есть не имеет собственных нормальных подгрупп ) и не коммутативна. Покажем, что этого быть не может. Поскольку центр группы G является нормальной подгруппой и не может совпадать со всей группой, он тривиален. Поэтому G можно рассматривать как группу преобразований сопряжения на множестве G. Рассмотрим разбиение множества G на классы сопряженных элементов: . Здесь отдельно выделен класс и классы неединичных элементов. Стабилизатор St(g) элемента g№e представляет собой подгруппу группы G, не совпадающую со всей группой. В самом деле, если St(g) = G, то g коммутирует со всеми элементами из G и потому gОZ(g) = {e}. Значит, порядок этой подгруппы не делится на p, а потому делится на p: . Но тогда - не делится на p, что не соответствует условию. Замечание.

Если число p не является простым, то теорема неверна даже для коммутативных групп. Например, группапорядка 4 коммутативна, но не является циклической, а потому не имеет элементов порядка 4.

    Теорема о подгруппах коммутативной группы.

Для конечной коммутативной группы G справедлива теорема обратная к теореме Лагранжа : если m - делитель порядка группы, то в G имеется подгруппа порядка m.

    Доказательство.

Проведем индукцию по порядку n группы G. Для n = 2 теорема очевидна. Пусть для всех коммутативных групп порядка < n теорема доказана. Пусть простое p делит m . По теореме Коши в G имеется циклическая подгруппа S порядка p. Так как G коммутативна, S - нормальная подгруппа. В факторгруппе G/S используя предположение индукции выберем подгруппу K порядка m/p . Если естественный гомоморфизм, то - подгруппа G порядка m .

    Замечание.

Для некоммутативных групп данная теорема неверна. Так, например, в группе четных перестановок степени 4, которая имеет порядок 12, нет подгрупп шестого порядка.



      ©2010