Абстрактная теория групп - (реферат)
Дата добавления: март 2006г.
Абстрактная теория групп I. Понятие абстрактной группы. 1. Понятие алгебраической операции.
Говорят, что на множестве X определена алгебраическая операция (*), если каждой упорядоченной паре элементов поставлен в соответствие некоторый элемент называемый их произведением. Примеры. Композиция перемещений на множествах является алгебраической операцией. Композиция подстановок является алгебраической операцией на множестве всех подстановок степени n. Алгебраическими операциями будут и обычные операции сложения, вычитания и умножения на множествахсоответственно целых, вещественных и комплексных чисел. Операция деления не будет алгебраической операцией на этих множествах, поскольку частное не определено при . Однако на множествах , это будет алгебраическая операция. Сложение векторов является алгебраической операцией на множестве . Векторное произведение будет алгебраической операцией на множестве . Умножение матриц будет алгебраической операцией на множестве всех квадратных матриц данного порядка.
2. Свойства алгебраических операций. Операция (*) называется ассоциативной, если .
Это свойство выполняется во всех приведенных выше примерах, за исключением операций вычитания ( и деления) и операции векторного умножения векторов. Наличие свойства ассоциативности позволяет определить произведение любого конечного множества элементов. Например, если, . В частности можно определить степени с натуральным показателем: . При этом имеют место обычные законы: , . 2. Операция (*) называется коммутативной, если В приведенных выше примерах операция коммутативна в примерах 3 и 4 и не коммутативна в остальных случаях. Отметим, что для коммутативной операции Элемент называется нейтральным для алгебраической операции (*) на множестве X, если . В примерах 1-6 нейтральными элементами будут соответственно тождественное перемещение, тождественная перестановка, числа 0 и 1 для сложения и умножения соответственно (для вычитания нейтральный элемент отсутствует ! ), нулевой вектор, единичная матрица. Для векторного произведения нейтральный элемент отсутствует. Отметим, что нейтральный элемент (если он существует) определен однозначно. В самом деле, если - нейтральные элементы, то . Наличие нейтрального элемента позволяет определить степень с нулевым показателем: . Допустим, что для операции (*) на X существует нейтральный элемент. Элемент называется обратным для элемента , если . Отметим, что по определению . Все перемещения обратимы также как и все подстановки. Относительно операции сложения все числа обратимы, а относительно умножения обратимы все числа, кроме нуля. Обратимые матрицы - это в точности все матрицы с ненулевым определителем. Если элемент x обратим, то определены степени с отрицательным показателем: . Наконец, отметим, что если x и y обратимы, то элемент также обратим и . (Сначала мы одеваем рубашку, а потом куртку; раздеваемся же в обратном порядке! ).
Определение (абстрактной) группы.
Пусть на множестве G определена алгебраическая операция (*). (G , *) называется группой, если
Операция (*) ассоциативна на G.
Для этой операции существует нейтральный элемент e (единица группы). Каждый элемент из G обратим.
Примеры групп. Любая группа преобразований. (Z, +), (R, +), (C, +).
Матричные группы: - невырожденные квадратные матрицы порядка n, ортогональные матрицы того же порядка, ортогональные матрицы с определителем 1.
3. Простейшие свойства групп.
В любой группе выполняется закон сокращения: (левый закон сокращения; аналогично, имеет место и правый закон). Доказательство. Домножим равенство слева на и воспользуемся свойством ассоциативности: . Признак нейтрального элемента:
Доказательство Применим к равенству закон сокращения. Признак обратного элемента: Доказательство: Применим закон сокращения к равенству .
Единственность обратного элемента. Обратный элемент определен однозначно. Следует из п. 3. Существование обратной операции. Для любых двух элементов произвольной группы G уравнение имеет и притом единственное решение. Доказательство Непосредственно проверяется, что(левое частное элементов ) является решением указанного уравнения. Единственность вытекает из закона сокращения, примененного к равенству. Аналогично устанавливается существование и единственность правого частного.
4. Изоморфизм групп. Определение.
Отображение двух групп G и K называется изоморфизмом , если 1. Отображение jвзаимно однозначно. 2. Отображениеj сохраняет операцию: . Поскольку отображение обратное к jтакже является изоморфизмом, введенное понятие симметрично относительно групп G и K , которые называются изоморфными.
Примеры.
1. Группы поворотов плоскости и вокруг точек и изоморфны между собой. Аналогично, изоморфными будут и группы, состоящие из поворотов пространства относительно любых двух осей. 2. Группа диэдра и соответствующая пространственная группа изоморфны. Группа тетраэдра T изоморфна группе состоящей из четных подстановок четвертой степени. Для построения изоморфизма достаточно занумеровать вершины тетраэдра цифрами 1, 2, 3, 4 и заметить, что каждый поворот, совмещающий тетраэдр с собой некоторым образом переставляет его вершины и, следовательно, задает некоторую подстановку множества{1, 2, 3, 4} Повороты вокруг оси, проходящей через некоторую вершину (например 1), оставляет символ 1 на месте и циклически переставляет символы 1, 2, 3. Все такие перестановки - четные. Поворот вокруг оси, соединяющей середины ребер (например, 12 и 34 ) переставляет символы 1 и 2 , а также 3 и 4. Такие перестановки также являются четными. Формула определяет взаимно однозначное соответствие между множеством R вещественных чисел и множеством положительных чисел. При этом . Это означает, что является изоморфизмом. Замечание. В абстрактной алгебре изоморфные группы принято считать одинаковыми. По существу это означает, что игнорируются индивидуальные свойства элементов группы и происхождение алгебраической операции.
5. Понятие подгруппы.
Непустое подмножество называется подгруппой, если само является группой. Более подробно это означает, что , и . Признак подгруппы. Непустое подмножество будет подгруппой тогда и только тогда, когда . Доказательство. В одну сторону это утверждение очевидно. Пусть теперь - любой элемент. Возьмем в признаке подгруппы. Тогда получим . Теперь возьмем . Тогда получим . Примеры подгрупп. Для групп преобразований новое и старое понятие подгруппы равносильны между собой.
- подгруппа четных подстановок. и т. д.
Пусть G - любая группа и - любой фиксированный элемент. Рассмотрим множество всевозможных степеней этого элемента. Поскольку , рассматриваемое множество является подгруппой. Она называется циклической подгруппой с образующим элементом g . Пусть любая подгруппа Рассмотрим множество - централизатор подгруппы H в группе G. Из определения вытекает, что если , то , то есть . Теперь ясно, что если , то и и значит централизатор является подгруппой. Если группа G коммутативна, то . Если G=H, то централизатор состоит из тех элементов, которые перестановочны со всеми элементами группы; в этом случае он называетсяцентром группы G и обозначается Z(G). Замечание об аддитивной форме записи группы. Иногда, особенно когда операция в группе коммутативна, она обозначается (+) и называется сложением. В этом случае нейтральный элемент называется нулем и удовлетворяет условию: g+0=g. Обратный элемент в этом случае называется противоположным и обозначается (-g). Степени элемента g имеют вид g+g+.... +g , называются кратными элемента g и обозначаются ng. 6. Реализация абстрактной группы как группы преобразований. Существует несколько способов связать с данной абстрактной группой некоторую группу преобразований. В дальнейшем, если не оговорено противное, знак алгебраической операции в абстрактной группе будет опускаться. Пусть некоторая подгруппа. А) Для каждого определим отображение (левый сдвиг на элемент h) формулой . Теорема 1 Множество L(H, G)= является группой преобразований множества G. Соответствие: является изоморфизмом групп H и L(H, G).
Доказательство.
Надо проверить, что отображение взаимно однозначно для всякого . Если , то по закону сокращения. Значит инъективно. Если любой элемент, то и так что к тому же и сюръективно. Обозначим через · операцию композиции в группе Sym(G) взаимно однозначных отображений . Надо проверить, что и . Пусть любой элемент. Имеем: ; и значит, . Пусть . Надо проверить, что l взаимно однозначно и сохраняет операцию. По построению l сюръективно. Инъективность вытекает из закона правого сокращения: . Сохранение операции фактически уже было установлено выше: . Следствие. Любая абстрактная группа изоморфна группе преобразований некоторого множества (Достаточно взять G=H и рассмотреть левые сдвиги).
Для случая конечных групп получается теорема Кэли:
Любая группа из n элементов изоморфна подгруппе группы подстановок степени n. Для каждого определим отображение (правый сдвиг на элемент h) формулой . Теорема B.
. Множество является группой преобразований множества G. Соответствие является изоморфизмом групп H и R(H, G).
Доказательство теоремы B вполне аналогично доказательству теоремы A. Отметим только, что . Именно поэтому в пункте 3 теоремы В появляется не , а . С) Для каждого определим (сопряжение или трансформация элементом h ) формулой . Теорема С. Каждое отображение является изоморфизмом группы G с собой (автоморфизмом группы G). Множество является группой преобразований множества G.
Отображение сюръективно и сохраняет операцию. Доказательство.
Поскольку , отображение взаимно однозначно как композиция двух отображений такого типа. Имеем: и потому сохраняет операцию. Надо проверить, что и . Оба равенства проверяются без труда. Сюръективность отображения имеет место по определению. Сохранение операции уже было проверено в пункте 2. Замечание об инъективности отображения q. В общем случае отображение qне является инъективным. Например, если группа H коммутативна, все преобразования будут тождественными и группа тривиальна. Равенство означает, что или (1) В связи с этим удобно ввести следующее определение: множество называется централизатором подгруппы . Легко проверить, что централизатор является подгруппой H. Равенство (1) означает, что. Отсюда вытекает, что если централизатор подгруппы H в G тривиален, отображение q является изоморфизмом.
Смежные классы; классы сопряженных элементов.
Пусть, как и выше, некоторая подгруппа. Реализуем H как группу L(H, G) левых сдвигов на группе G. Орбита называется левым смежным классом группы G по подгруппе H. Аналогично, рассматривая правые сдвиги, приходим к правым смежным классам. Заметим, что стабилизатор St(g, L(H, G)) (как и St(g, R(H, G)) ) тривиален поскольку состоит из таких элементов, что hg=g. Поэтому, если группа H конечна, то все левые и все правые смежные классы состоят из одинакового числа элементов, равного. Орбиты группы называются классами сопряженных элементов группы G относительно подгруппы H и обозначаются Если G=H, говорят просто о классах сопряженных элементов группы G. Классы сопряженных элементов могут состоять из разного числа элементов . Это число равно, где Z(H, g) подгруппа H , состоящая из всех элементов h перестановочных с g. Пример. Пусть - группа подстановок степени 3. Занумеруем ее элементы: =(1, 2, 3); =(1, 3, 2); =(2, 1, 3); =(2, 3, 1); =(3, 1, 2); =(3, 2, 1). Пусть . Легко проверить, что левые смежные классы суть: , , .
Правые смежные классы: , , . Все эти классы состоят из 2 элементов. Классы сопряженных элементов G относительно подгруппы H: , , , . В то же время, , , . Теорема Лагранжа.
Пусть H подгруппа конечной группы G. Тогда порядок H является делителем порядка G.
Доказательство.
По свойству орбит G представляется в виде объединения непересекающихся смежных классов: . Поскольку все смежные классы состоят из одинакового числа элементов, , откуда и вытекает теорема. Замечание. Число s левых (или правых) смежных классов называется индексом подгруппы . Следствие. Две конечные подгруппы группы G порядки которых взаимно просты пересекаются только по нейтральному элементу. В самом деле, если эти подгруппы, то их общая подгруппа и по теореме Лагранжа - общий делитель порядков H и K то есть 1.
Нормальные подгруппы. Факторгруппы.
Пусть любая подгруппа и -любой элемент. Тогда также является подгруппой G притом изоморфной H, поскольку отображение сопряжения является изоморфизмом. Подгруппа называется сопряженной по отношению к подгруппе H. Определение. Подгруппа H называется инвариантной или нормальной в группе G, если все сопряженные подгруппы совпадают с ней самой: . Равенство можно записать в виде Hg = gH и таким образом, подгруппа инвариантна в том и только в том случае, когда левые и правые смежные классы по этой подгруппе совпадают.
Примеры.
В коммутативной группе все подгруппы нормальны, так как отображение сопряжения в такой группе тождественно. В любой группе G нормальными будут , во первых, тривиальная подгруппа и, во вторых, вся группа G. Если других нормальных подгрупп нет, то G называетсяпростой. В рассмотренной выше группе подгруппа не является нормальной так как левые и правые смежные классы не совпадают. Сопряженными с H будут подгруппы и . Если - любая подгруппа, то ее централизатор Z = Z(H, G) - нормальная подгруппа в G , так как для всех ее элементов z. В частности, центр Z(G) любой группы G -нормальная подгруппа. Подгруппа H индекса 2 нормальна. В самом деле, имеем 2 смежных класса : H и Hg = G-H = gH. Теорема (свойство смежных классов по нормальной подгруппе). Если подгруппа H нормальна в G, то множество всевозможных произведений элементов из двух каких либо смежных классов по этой подгруппе снова будет одним из смежных классов, то есть.
Доказательство. Очевидно, что для любой подгруппы H . Но тогда = = = .
Таким образом, в случае нормальной подгруппы H определена алгебраическая операция на множестве смежных классов. Эта операция ассоциативна поскольку происходит из ассоциативного умножения в группе G. Нейтральным элементом для этой операции является смежный класс. Поскольку , всякий смежный класс имеет обратный. Все это означает, что относительно этой операции множество всех (левых или правых) смежных классов по нормальной подгруппе является группой. Она называетсяфакторгруппой группы G по H и обозначается G/H. Ее порядок равен индексу подгруппы H в G. 9 Гомоморфизм. Гомоморфизм групп - это естественное обобщение понятия изоморфизма. Определение. Отображение групп называется гомоморфизмом, если оно сохраняет алгебраическую операцию, то есть : . Таким образом, обобщение состоит в том, что вместо взаимно однозначных отображений, которые участвуют в определении изоморфизма, здесь допускаются любые отображения.
Примеры. Разумеется, всякий изоморфизм является гомоморфизмом. Тривиальное отображение является гомоморфизмом.
Если - любая подгруппа, то отображение вложения будет инъективным гомоморфизмом. Пусть - нормальная подгруппа. Отображение группы G на факторгруппу G/H будет гомоморфизмом поскольку . Этот сюръективный гомоморфизм называется естественным. По теореме С предыдущего раздела отображение сопряжения сохраняет операцию и, следовательно является гомоморфизмом. Отображение , которое каждому перемещению n- мерного пространства ставит в соответствие ортогональный оператор (см. лекцию №3) является гомоморфизмом поскольку по теореме 4 той же лекции . Теорема (свойства гомоморфизма)
Пусть - гомоморфизм групп, и - подгруппы. Тогда: , . - подгруппа. -подгруппа, причем нормальная, если таковой была . Доказательство. и по признаку нейтрального элемента . Теперь имеем: .
Пусть p = a(h) , q = a(k) . Тогда и . По признаку подгруппы получаем 2. Пусть то есть элементы p = a(h) , q = a(k) входят в . Тогда то есть . Пусть теперь подгруппа нормальна и - любой элемент. и потому . Определение. Нормальная подгруппа называется ядром гомоморфизма . Образ этого гомоморфизма обозначается . Теорема.
Гомоморфизм a инъективен тогда и только тогда, когда Доказательство.
Поскольку , указанное условие необходимо. С другой стороны, если , то и если ядро тривиально, и отображение инъективно. Понятие гомоморфизма тесно связано с понятием факторгруппы. Теорема о гомоморфизме. Любой гомоморфизм можно представить как композицию естественного (сюръективного) гомоморфизма , изоморфизма и (инъективного) гомоморфизма (вложения подгруппы в группу): . Доказательство. Гомоморфизмы p и i описаны выше (см. примеры) Построим изоморфизм j. Пусть . Элементами факторгруппы являются смежные классы Hg . Все элементы имеют одинаковые образы при отображении a: . Поэтому формула определяет однозначное отображение . Проверим сохранение операции . Поскольку отображение j очевидно сюръективно, остается проверить его инъективность. Если , то и потому . Следовательно, и по предыдущей теореме j инъективно. Пусть - любой элемент. Имеем : . Следовательно, .
10 Циклические группы.
Пусть G произвольная группа и - любой ее элемент. Если некоторая подгруппа содержит g , то она содержит и все степени . С другой стороны, множество очевидно является подгруппой G . Определение. Подгруппа Z(g) называется циклической подгруппой G с образующим элементом g. Если G = Z(g) , то и вся группа G называется циклической. Таким образом, циклическая подгруппа с образующим элементом g является наименьшей подгруппой G, содержащей элемент g.
Примеры
Группа Z целых чисел с операцией сложения является циклической группой с образующим элементом 1. Группа поворотов плоскости на углы кратные 2p¤n является циклической с образующим элементом - поворотом на угол 2p¤n. Здесь n = 1, 2, .... Теорема о структуре циклических групп. Всякая бесконечная циклическая группа изоморфна Z. Циклическая группа порядка n изоморфна Z / nZ .
Доказательство.
Пусть G = Z(g) - циклическая группа. По определению, отображение - сюръективно. По свойству степеней и потому j - гомоморфизм. По теореме о гомоморфизме . H = KerjМZ. Если H - тривиальная подгруппа, то . Если H нетривиальна, то она содержит положительные числа. Пусть n наименьшее положительное число входящее в H. Тогда nZМH. Предположим, что в H есть и другие элементы то есть целые числа не делящееся на n нацело и k одно из них. Разделим k на n с остатком: k = qn +r , где 0 < r < n. Тогда r = k - qnО H , что противоречит выбору n. Следовательно, nZ = H и теорема доказана. Отметим, что » Z / nZ .
Замечание.
В процессе доказательства было установлено, что каждая подгруппа группы Z имеет вид nZ , где n = 0 , 1 , 2 , ....
Определение.
Порядком элемента называется порядок соответствующей циклической подгруппы Z( g ) . Таким образом, если порядок g бесконечен, то все степени - различные элементы группы G. Если же этот порядок равен n, то элементы различны и исчерпывают все элементы из Z( g ), а N кратно n . Из теоремы Лагранжа вытекает, что порядок элемента является делителем порядка группы. Отсюда следует, что для всякого элемента g конечной группы G порядка n имеет место равенство.
Следствие.
Если G - группа простого порядка p, то - циклическая группа. В самом деле, пусть - любой элемент отличный от нейтрального. Тогда его порядок больше 1 и является делителем p, следовательно он равен p. Но в таком случае G = Z( g )».
Теорема о подгруппах конечной циклической группы.
Пусть G - циклическая группа порядка n и m - некоторый делитель n. Существует и притом только одна подгруппа HМG порядка m. Эта подгруппа циклична. Доказательство. По предыдущей теореме G»Z / nZ. Естественный гомоморфизм устанавливает взаимно однозначное соответствие между подгруппами HМG и теми подгруппами KМZ , которые содержат Kerp= nZ . Но, как отмечалось выше, всякая подгруппа K группы Z имеет вид kZ Если kZЙnZ , то k - делитель n и p(k) - образующая циклической группы H порядка m = n /k. Отсюда и следует утверждение теоремы. Верна и обратная теорема: если конечная группа G порядка n обладает тем свойством, что для всякого делителя m числа n существует и притом ровно одна подгруппа H порядка m, то G циклическая группа.
Доказательство.
Будем говорить, что конечная группа G порядка N обладает свойством (Z), если для всякого делителя m числа N существует и притом только одна подгруппа HМG порядка m. Нам надо доказать, что всякая группа, обладающая свойством (Z) циклическая. Установим прежде всего некоторые свойства таких групп. Лемма.
Если G обладает свойством (Z), то Любая подгруппа G нормальна.
Если x и y два элемента такой группы и их порядки взаимно просты, то xy = yx. Если H подгруппа порядка m такой группы G порядка N и числа m и N/m взаимно просты, то H обладает свойством (Z).
Доказательство леммы.
1. Пусть HМG . Для любого подгруппа имеет тот же порядок, что и H. По свойству (Z) то есть подгруппа H нормальна. 2. Пусть порядок x равен p, а порядок y равен q. По пункту 1) подгруппы Z(x) и Z(y) нормальны. Значит, Z(x)y = yZ(x) и xZ(y) = Z(y)x и потому для некоторыхa и b . Следовательно, . Но, поскольку порядки подгрупп Z(x) и Z(y) взаимно просты, то . Следовательно, и потому xy = yx. Используя свойство (Z) , выберем в G подгруппу K порядка N/m. По 1) эта подгруппа нормальна, а поскольку порядки H и K взаимно просты, эти подгруппы пересекаются лишь по нейтральному элементу. Кроме того по 2) элементы этих подгрупп перестановочны между собой. Всевозможные произведения hk =kh, где hОH, kОK попарно различны, так как =e поскольку это единственный общий элемент этих подгрупп. Количество таких произведений равно m N/m = и, следовательно, они исчерпывают все элементы G. Сюръективное отображение является гомоморфизмом с ядром K. Пусть теперь число s является делителем m. Выберем в G подгруппу S порядка s. Поскольку s и N/m взаимно просты, и потому - подгруппа порядка s. Если бы подгрупп порядка s в H было несколько, то поскольку все они были бы и подгруппами G условие (Z) для G было бы нарушено. Тем самым мы проверили выполнение условия (S) для подгруппы H. Доказательство теоремы. Пусть - разложение числа N в произведение простых чисел. Проведем индукцию по k. Пусть сначала k = 1, то есть. Выберем в G элемент x максимального порядка . Пусть y любой другой элемент этой группы. Его порядок равен , где u Ј s. Группы и имеют одинаковые порядки и по свойству (Z) они совпадают. Поэтому и мы доказали, что x - образующий элемент циклической группы G. Пусть теорема уже доказана для всех меньших значений k. Представим N в виде произведения двух взаимно простых множителей N = pq (например, ) . Пусть H и K подгруппы G порядка p и q. Использую 3) и предположение индукции , мы можем считать, что H = Z(x), K = Z(y), причем xy = yx . Элемент xy имеет порядок pq = N и, следовательно, является образующим элементом циклической группы G.
11. Некоторые теоремы о подгруппах конечных групп. Теорема Коши.
Если порядок конечной группы делится на простое число p, то в ней имеется элемент порядка p. Прежде чем переходить к доказательству этой теоремы, отметим, что если g№e и , где p - простое число, то порядок g равен p. В самом деле, если m - порядок g, то p делится на m, откуда m=1 или m=p. Первое из этих равенств невозможно по условиям выбора g. Индукция , с помощью которой проводится доказательство теоремы, основана на следующей лемме
Лемма.
Если некоторая факторгруппа G/H конечной группы G имеет элемент порядка p, то тем же свойством обладает и сама группа G.
Доказательство леммы.
Пусть - элемент порядка p. Обозначим через m порядок элемента . Тогда и значит m делится на p. Но тогда - элемент порядка p. Доказательство теоремы Коши. Зафиксируем простое число p и будем проводить индукцию по порядку n группы G. Если n=p, то G»Z/pZ и теорема верна. Пусть теорема уже доказана для всех групп порядка меньше n и, причем n делится на p.
Рассмотрим последовательно несколько случаев
G содержит собственную ( то есть не совпадающую со всей группой и нетривиальную) подгруппу H , порядок которой делится на p. В этом случае порядок H меньше n и по предположению индукции имеется элемент порядка p. Поскольку в этом случае теорема доказана. G содержит собственную нормальную подгруппу. Если ее порядок делится на p, то по 1 теорема доказана. В противном случае на p делится порядок факторгруппы G/H и теорема в этом случае следует из доказанной выше леммы. Если G - коммутативна, то возьмем любой . Если порядок g делится на p, то теорема доказана по 1, поскольку Z(g)МG. Если это не так, то , поскольку в коммутативной группе все подгруппы нормальны, теорема доказана по 2. Остается рассмотреть случай, когда порядки всех собственных подгрупп G не делятся на p, группа G проста ( то есть не имеет собственных нормальных подгрупп ) и не коммутативна. Покажем, что этого быть не может. Поскольку центр группы G является нормальной подгруппой и не может совпадать со всей группой, он тривиален. Поэтому G можно рассматривать как группу преобразований сопряжения на множестве G. Рассмотрим разбиение множества G на классы сопряженных элементов: . Здесь отдельно выделен класс и классы неединичных элементов. Стабилизатор St(g) элемента g№e представляет собой подгруппу группы G, не совпадающую со всей группой. В самом деле, если St(g) = G, то g коммутирует со всеми элементами из G и потому gОZ(g) = {e}. Значит, порядок этой подгруппы не делится на p, а потому делится на p: . Но тогда - не делится на p, что не соответствует условию. Замечание. Если число p не является простым, то теорема неверна даже для коммутативных групп. Например, группапорядка 4 коммутативна, но не является циклической, а потому не имеет элементов порядка 4.
Теорема о подгруппах коммутативной группы.
Для конечной коммутативной группы G справедлива теорема обратная к теореме Лагранжа : если m - делитель порядка группы, то в G имеется подгруппа порядка m.
Доказательство.
Проведем индукцию по порядку n группы G. Для n = 2 теорема очевидна. Пусть для всех коммутативных групп порядка < n теорема доказана. Пусть простое p делит m . По теореме Коши в G имеется циклическая подгруппа S порядка p. Так как G коммутативна, S - нормальная подгруппа. В факторгруппе G/S используя предположение индукции выберем подгруппу K порядка m/p . Если естественный гомоморфизм, то - подгруппа G порядка m .
Замечание.
Для некоммутативных групп данная теорема неверна. Так, например, в группе четных перестановок степени 4, которая имеет порядок 12, нет подгрупп шестого порядка.
|