Шпаргалка: Вопросы и ответы к экзаменам В-1
Вопросы и ответы
к экзаменам В-1 (1999)
1. Алгоритм.
Свойства алгоритма. Способы записи алгоритма
(общ.) Алгоритм – это система формальных правил однозначно приводящая к решению
поставленной задачи.
(ПК.) Алгоритм- это последовательность арифметических и логических действий над данными, приводящая к получению решения поставленной задачи.
Свойства:
А) Дискретность - алгоритм состоит из отдельных пунктов или шагов
Б) Определённость - каждый шаг алгоритма должен быть строго сформулирован.
(иметь точный смысл)
В) Связанность - на каждом следующем шаге используются результаты предыдущего.
Г) Конечность – алгоритм должен завершаться после конечного числа шагов
Д) Результативность – алгоритм должен приводить к получению конечных результатов
Е) Массовость – пригодность для решения широкого класса задач.
Ж) Эффективность – применение а. должно давать какой бы-то положительный временной результат (временной)
Способ записи:
А) Словесно-формульный
Б) Структурная схема и алгоритм (ССА)
В) Спец. языки (алгоритмические и псевдокоды)
(псевдокод - искусственный неформальный язык, обычно состоит из элементов обычного языка с
элементами программирования)
Г) Графический способ
2. Линейные и
разветвляющиеся алгоритмы. Cтруктурные
схема алгоритмов. Правила выполнения.
CCA- при записи в виде структурной схемы алгоритм представляется графически в виде последовательности блоков
выполняющих определённые функции и блоки соединяются линиями возможно со стрелками. Внутри блоков операции. Блоки нумеруются по порядку. По способу
организации алгоритмов ССА блоки делятся на линейные, разветвляющиеся и циклические.
В линейных алгоритмах результат получается после выполнения одной последовательности действий.
Начало—ряд операторов—конец.
Разветвляющийся алгоритм предусматривает выбор одной из нескольких последовательностей действий в
зависимости от исходных данных или промежуточных результатов.
3. Циклические
алгоритмы. Классификация. Вычисление
сумм, произведений.
Циклический алгоритм – это алгоритм обеспечивающий решение задачи путём многократного повторения
последовательности действий. Участки, которые многократно повторяются - называются циклами.
Циклы по числу повторений делятся на циклы с заданным числом повторений и итерационные.
ЦИКЛЫ
ЗАДАННОЕ ЧИСЛО ИТЕРАЦИОННЫЕ
СО СЧЁТЧИКОМ УПР. УСЛОВИЕМ
ПОСТ. УСЛОВИЕ ПРЕДУСЛОВИЕ
Общее замечание: вход только в начало цикла, а выход вследствие окончания цикла, оператором GOTO, процедурами прерхода и выхода, находящимся в теле
цикла.
4. Циклические
алгоритмы. Итерационные циклы. Вложенные циклы.
Циклический алгоритм – это алгоритм обеспечивающий решение задачи путём многократного повторения
последовательности действий. Участки, которые многократно повторяются - называются циклами.
Циклы по числу повторений делятся на циклы с заданным числом повторений и итерационные.
В итерационных циклах выполнение цикла оканчивается при выполнении общего условия, связанного с проверкой монотонно изменяющейся
величины.
Вложенные циклы – это, когда определённый цикл повторяется многократно в другом цикле охватывающем данный.
5. Массивы.
Алгоритмы обработки массивов. Процедура BREAK
Массив - это упорядоченная последовательность величин, обозначаемая одним именем.
Положение каждого элемента в массиве определяется его индексом (индексами). В этом и заключается упорядоченность. Индексы принято указывать в скобках после
имени массива.
Пример: В[2] означает второй элемент массива В.
Пусть имеется некоторая последовательность величин 1, 2, 4, 8, 3. Все элементы этой последовательности
имеют одно имя А. Отличаются они друг от друга индексами, например, A[1]=1, A[2]=2, A[3]=4, A[5]=8, A[6]=3.
При описании массива указывается число его элементов, и это число остается постоянным при выполнении программы. Каждый элемент массива имеет явное
обозначение, и к нему возможно непосредственное обращение.
Количество индексов в обозначении элемента массива определяет размерность массива. Массив
может быть одномерным (один индекс S[4]), двумерным (два индекса N[2,4]), трех мерным (три индекса Y[2,4,1]) и т.д.
Массив описывается в разделе описания переменных, при этом описание массива включает
описание типа массива (тип его элементов, т.е. какие значения они могут принимать) и типа индексов. Например, массив вещественного типа с именем vector может быть описан следующим образом:var vector: array [1..50] of real
Это описание означает, что одномерный массив vector имеет 50 элементов типа real со значениями индекса 1,2, ...,50. Элементы этого
массива будут иметь обозначения: vector[1], vector[2], ..., vector[50]
Двумерный массив matrix, с целочисленными компонентами можно определить следующим образом:
var matrix [1..10,1..15] of integer
Двумерный массив часто называют матрицей. Первый индекс этого массива (номер строки
матрицы) принимает значения из отрезка 1..10, а второй (номер столбца) - из отрезка 1..15. Компоненты массива могут иметь обозначения: matrix[1,5], matrix[8,8], matrix[i,j] и т.п.
Примеры:
program p2;
var matrix: array [1..3, 1..4] of integer;{ определяется двумерный массив в 3 строки и 4 столбца с именем matrix}
i, j: integer;
begin
for i:=1 to 3 do
for j:=1 to 4 do
read(matrix[ i, j]); {заполнение двумерного массива на 3 строки и 4 столбца}
for i:=1 to 3 do
begin
writeln;
for j:=1 to 4 do write(matrix[ i, j]);{вывод элементов двумерного массива в виде таблицы}
end;
6.
Структуризация. Восходящее программирование.
Проектирование алгоритма
перевода чисел из одной системы счисления в другую (2,8,10,16).
Восходящее проектирование – используется для несложных задач, когда заранее известны все подзадачи или
функции, которые выполнять программа. Разрабатывается алгоритм для каждой подзадачи, а затем они собираются в единую подпрограмму.
7. Нисходящее
программирование. Проектирование
алгоритма выполнения арифметических
операций (+,-,*,/) над числами с пл. точкой.
При нисходящем программировании сверху вниз сначала разрабатывается общая структурная схема
алгоритма, а затем разрабатываются этапы её детализации (структурирование).
8. Язык TURBO
PASCAL. Алфавит языка. Идентификаторы TURBO PASCAL.
ТП – единство двух самостоятельных начал компилятора и инструментов програмной оболочки. Это мощная современная процедурная система
программирования
Алфавит: буквы латинского от a до z, знак _.(если не char A = a)
Цифры – арабские 0-9, спец. символы +-*/=.,:;<>[]{}()^&$@#%!
Пробелы (ASCII от 0 до 32) ограничители идентификаторов
Зарезервированные слова и параметры (не используются в качестве идентификаторов). Стандартные директивы absolute, assembler, external, far, forward,
near и т.д. .
Идентификаторы: имена констант, var’ных, меток , типов, obg-ов, процедур, функций(могут иметь произвольную длину,
но значат только первые 63 символа, начинаются только с буквы или цифры).
9. Оператор
условного перехода IF. Составной и пустой операторы.
IF<условие >THEN<операторы> ELSE <операторы>;
10. Оператор
цикла со счетчиком.
FOR <идентификатор>:=<начальное состояние >TO<конечное состояние > DO<оператор>
FOR <идентификатор>:=<начальное состояние >DOWNTO<конечное состояние > DO<оператор>
11. Оператор
цикла с предусловием.
Цикл ДО
WHILE<условие>DO<оператор>
12. Оператор
цикла с постусловием.
Цикл ПОКА
REPEAT
Оператор;
UNTIL<условие>;
13. Подготовка
и отладка программ в среде TurboPascal.
Меню run
Run- запуск на исполнение
Step over-пошаговое исполнение программы
Trace into- пошаговое исполнение программы только подпрограммы выполняются оператор за оператором
Go to cursor – выполнение до курсора
Program reset- завершение процесса отладки
Parameters- окно для ввода параметров для отладки
Меню compile
Compile- компиляция файла, находящегося в активном окне редактирования.
Make – условная компиляция изменённых модулей в ЕХЕ файл
Build- безусловная компиляция многомодульной программы с созданием ЕХЕ файла
Target…-выбор в окне таргет целевой платформы для приложения
Primary file…-открывает окно для указания главного файла, компилируемой программы.
Меню Debug:
Breakpoints- установка точек условного и безусловного перехода
Call stack – показывает процедуры выполнявшиеся ранее.
Register – информация о регистрах процессора
Watch – окно значений переменных
Output – окно результатов работы программы
User screen – просмотр результатов включая графику
Evaluate/ modify.. – окно изменения значений выражений
Add watch – окно значений и переменных вовремя отладки
Add breakpoint.. – окно установки точек прерывания программы
14. Константы
в TURBO PASCAL (целые, вещественные, 16-ричные, логические, символьные, строковые константы,
конструктор множества)
Константы - могут использоваться целые, вещественные, шестнадцатеричные числа, логические
константы, символы, строки, множества и признак неопределённого указателя NIL.
Целые числа: от –2147483648 до 2147483647
Вещественные числа: (экспоненциальная часть) 3.14E5
16-ричное число: $(код 36 в ASCII) $00000000- $F…$F(8)
Логическая константа: True, False.
Символьная константа: любой символ в ‘ ‘, либо указатель внутри кода #83=’S’
Конструктор множества - список элементов множества в [].
[1,2,3,4],[red, blue],[true, false]. В ТП разрешается объявление констант
const a=12/343;
15.
Типизированные константы.
Типизированные константы фактически являются переменными со статическим классом памяти. В отличие от простых констант, в описании
типизированных указывается как значение константы, так и её тип.
Существуют типы:
Константа, константа-адрес, константа-массив, константа-запись, константа-объект, константа-множество.
Указательный тип:
Type ptr = ^integer;
Conct intptr:ptr=nil;
Структурированный тип:
1 массив (array)
2 множество (set of 1..4)
3 запись (record)
4Объектного типа (object)
16. Оператор
присваивания. Приоритет операций. Стандартные функции.
<имя переменной>:=<выражение>;
арифметические логические отношения прочие
1 NOT @-адресное преобразование
2 *,/,DIV,MOD AND,SHL,SHR
3 +,- OR, XOR
4 <;>;=; IN
Для повышения приоритета используются ( ).
Стандартные функции ТП.
ABS(X ) SQR(X) SQRT(X) TRUNG(X) ROUND(X)
COS(X) SIN(X) TG(X) ARCTANG(X) EXP(X)
LN(X) PRED(X) SUCE(X) ORD(X) CHR(X)
ODD(X) INT(X) FRAG(X) +,-,*,/ (X)DIV(Y)
MOD(X) NOT AND OR XOR
= < > I_SHL_J I_SHR_J
17. Операторы и функции
безусловного
перехода (goto, continue, exit, halt).
EXIT; - выход из программы или подпрограммы
HALT(COD);- (COD) – необязательный параметр, определяет код
HALT; - безусловная остановка программы
ERRORLEVEL; - вниз
BREAK; - досрочный выход из цикла
CONTINUE; - прерывает выполнение текущей операции в цикле, передаёт управление следующему оператору
18. Структуры
простой и сложной программ в Турбо-Паскале.
PROGRAM<имя программы >;
USES<имя модуля>;
TYPE<раздел типов>;
LABEL<метки>;
CONST<константы>;
VAR<переменные и их типы>;
FUNCTION<имя функции>(имя переменной: тип)
BEGIN
операторы
END;
PROCEDURE<имя процедуры>( параметры)
BEGIN
операторы
END;
BEGIN
Текст основной программы
END.
19.
Подпрограммы. Применение. Структура описания. Отличие процедуры от функции.
Самостоятельные, законченные фрагменты программы, оформленные особым образом, снабжённые именем – называются
подпрограммами
Использование подпрограмм позволяет разбить программу на ряд независимых частей.
Подпрограммы используются:
1Для экономии памяти, когда некоторая последовательность действий встречается неоднократно на разных
участках программы. Каждая подпрограмма существует в ед. экземпляре, но обращаться к ней можно неоднократно из разных точек программы.
2. В сложных программах при модульном проектировании.
Подпрограммы делятся на процедуры и функции
Результатом исполнения функции является единственное значение простого, строкового или указательного
типа. Поэтому обращение к функции можно использовать выраженное наряду с константой и переменные.
Процедура обычно возвращает несколько значений, подпрограмма состоит из заголовка и тела подпрограммы.
Тело подпрограммы состоит из раздела описаний и раздела операторов.
Структура: PROCEDURE<имя процедуры >;
FUNCTION<имя функции>(параметр: тип);
USES<модули>;
LABEL<метки>;
CONST<константы>;
TYPE<типы>;
VAR<переменные>;
BEGIN
Тело подпрограммы
END;
20. Вложенные
подпрограммы. Принципы локализации имен (локальные и глобальные переменные).
Вложенными являются подпрограммы, вызываемые из других подпрограмм.
Если какая либо программа использует некоторые переменные подпрограммы,
То данные переменные должны быть описаны не в подпрограмме, а в самой программе. Данные переменные
называются глобальными, а переменные, объявленные в модуле или подпрограмме являются локальными, и значения
этих временных нельзя использовать в главной программе.
21. Вызов
подпрограмм (формальные и фактические параметры).
Подпрограммы могут быть вызваны как из тела основной программы, так и из тела другой подпрограммы. Для
вызова необходимо написать имя процедуры или функции, а также, если надо, ряд переменных передаваемых в подпрограмму.
Пример:
PROCEDURE<имя>[(<формальные параметры>)];
FUNCTION<имя>[(<формальные параметры>)]:<тип>
Сразу за заголовками может следовать одна стандартных директив: ASSEMBLER <тело подпрограммы на ассемблере>, EXTERNAL<объявление внешней подпрограммы>, FAR, FORWARD, INLINE<встроенные машинные инструменты>, INTERRUPT,NEAR.
PROCEDURE SB(a: real<формальный параметр>);
Фактические параметры – это глобальные переменные подставленные в формальные
ТИП ФАКТ=ТИП ФОРМ.
22. Процедуры
без параметров и с параметрами.
PROCEDURE<имя>
Begin
<текст процедуры>
end;
23. Передача в
подпрограмму параметров регулярного типа (массивов, строк).
Типом любого формального параметра может быть только стандартный или ранее объявленный тип.
Пример:
TYPE TYPE
ATYPE=ARRAY[1..10]OF REAL; INTYPE=STRING[15];
PROCEDURE S(A:ATYPE); OUTTYPE=STRING[30];
FUNCTION ST(S:INTYPE):OUTTYPE
Иной способ для передачи параметров переменных отключением контроля компиляции.
Открытый массив PROCEDURE I (A: ARRAY OF REAL);
24. Функции.
Описание. Вызов функции.
FUNCTION<имя>[(<формальные параметры>)]:<тип>
Сразу за заголовками может следовать одна стандартных директив: ASSEMBLER <тело подпрограммы на ассемблере>, EXTERNAL<объявление внешней подпрограммы>, FAR, FORWARD, INLINE<встроенные машинные инструменты>, INTERRUPT,NEAR.
FUNCTION<имя функции>(параметр: тип);
Begin
<тело подпрограммы>
end;
25. Рекурсии.
Прямая и косвенная рекурсия. Директива FORWARD.
Рекурсия – это такой способ организации вычислительного процесса при котором программа в ходе выполнения
составляющих её операторов обращается сама к себе.
Для избежания переполнения стёка, следует размещать промежуточные результаты во вспомогательной переменной.
Begin
…………………………
F:=fac(n-1); - вспомогательная переменная
……………………….
End;
Рекурсивный вызов может быть косвенным, который разрешается опережающим описанием:
Procedure b(j: byte);
Forward;
Procedure a (i: byte);
Begin
B(i);
End;
26.
Тип-диапазон. Структурированные типы. Массивы.
Любой из структурированных типов (а в ТП их 4 : массивы, записи, множества, файлы) характеризуется множественностью образующих этот тип
элементов. В ТП
Допускается бесконечная глубина вложенности типов, однако Суммой=<65520 байт (т.к. каждый компонент
может представлять структурированный тип).
PACKED- осуществляется везде где это возможно.
Тип диапазон:
TYPE
D = array [0..9] of char;
Var m: d;
Begin <операторы>end.
Обычно в качестве идентификатора типа используется тип–диапазон, в котором задаются границы
изменения индексов.
Тип-диапазон подмножество своего базового типа, в качестве которого может выступать любой порядковый тип,
кроме типа-диапазона.
<мин. значение >..<макс. значение>
TYPE digit = ‘0’..’9’; можно Var date:1..31;
dig2=48..57; month:1..12;
1CHR:’a’..’z’;
High(x) – максимальное значение типа диапазон
Low(x) – минимальное значение типа диапазон.
Массивы - формальное объединение нескольких однотипных объектов (чисел, символов, строк и т.д.),
рассматриваемое как единое целое.
Var a: array [1..10] of real;
Компоненты массива состоят из данных одного типа (возможно структурированного).
В качестве идентификаторов порядковые типы кроме LongInt и типа диапазон с базисным типом LongInt/
27. Символьный
тип.
Значением символьного типа является множество всех символов ПК. Каждому символу присваивается целое число
в диапазоне 0..255.Это служит кодом внутреннего представления символа, его возвращает функция ORD. Для кодировки используется
код ASCII – 7 битный код, т.е. с его помощью кодируется 128 символов (0..127). В то же время в 8-битном байте, отведённом для хранения символа в ТП,
можно закодировать в 2 раза больше символов (0..255). (0-127ASCII, 128-255-может меняться на ПК разных типов).
0-31 – служебные коды (пробелы)
28. Строковый
тип. Операции, процедуры и функции
Значением строкового типа является любая последовательность символов, т.е. строка. Окончанию строки
соответствует символ с кодом 0, и которые называются строками с завершающим нулём или ASCIIZ-строками.
Строковый тип соответствует идентификаторам string и PChar.
A: array[0..n] of char = a: string
Ord(0)=length(a)- длинна строки(не больше 255 символов)
Concat (S1 [s2 ..,SN])- сцепление строк
Copy (St, index, count) – копирует из строки ST символ, начиная с index
Delete(ST, a, b) – удаление b символов начиная с a
Insert (sut, st, b)–вставляет SUT в ST начиная с b
Pos (Sut, St) - в строке ST отыскивает Sut если нет 0
Str (X [WIDTH [:DECIMALS]], ST)- из вещественного или целого в строку
Val (st ,x, code) – обратно str (пробелы не допускаются)
Var s: string;
Begin
…….
S:= ’dsfsdhfjhsdfjshdfjsd’;
……….
End.
29. Типы в
Турбо-Паскале. Объявление новых типов. Порядковые типы. Изменение типа выражения
Стандартные типы в ТП:
1 группа целых типов(ShortInt, integer, LongInt, Byte, Word);
2 группа вещественных типов(Single, real, Double, Extended, Comp);
3 группа Булевские типы (Boolean, ByteBool, WordBool, LongBool);
4 Символьный тип(Char);
5 Строковые типы(String, PChar);
6 Указательный тип (Pointer);
7 Текстовый тип (Text);
Type <Новый тип>=<описание типа>
Символьный тип, а также целые и булевские типы относятся к порядковым типам.
Свойства:
1 Каждый элемент имеет свой порядковый номер
2 Поэтому возможен использование функцииOrd, возвращающей этот номер
3 Возможно применить функцию Pred и Succ которые верну соответственно предыдущее и последующее
значения
30. Целые
типы. Правила объявления. Применяемые функции.
Целые типы:
Byte 0..255 ShortInt –128..127 Word 0..65535 Integer –32768..32767
LongInt –2147483648.. 2147483647
Вложение типов:
Type result = более мощный тип
A: integer;
LongInt(a);
Процедуры и функции:
ABS(X) CHR(X) DEC INC SQR HI(I)-старший байт
LOW(X) – младший байт ODD(I) – возвращает правда если нечет
RANDOM(x) SWAP(I)- меняет местами байты
31. Логический
тип. Логические операции и функции
Логический тип ещё называют булевским. Их 4:
Boolean(false=0, 1 байт); ByteBool (false=0, 1 байт); WordBool (false=0 в обоих байтах, 2 байта); LongBool (false=0 во всех
байтах, 4 байта).
Логические функции:
Ord; Pred; Succ; or ;and ; xor ;
32.
Перечисляемые типы. Функции и операции, применимые к ним.
Перечисляемый тип задаётся тем значениям, которые он может получить. Значения
именуются идентификаторами и располагаются в списке с ( ).
Type col = (red, white, blue);
Max=65536 значений;
Ord (red) =0;
Var c: col;
C:= col(0);
С:=red;
В идентификаторах нельзя использовать кириллицу. Переменные так же можно объявлять без предварительного
описания типа
Var col: (black, white, green);
33. Множества
и операции над ними.
МНОЖЕСТВА - наборы однотипных логически связанных друг с другом объектов. Характер связей между объектами подразумевается лишь
программистом и не контролируется Турбо Паскалем. Количество элементов в множестве может меняться от 0 до 255. Множество, которое не содержит элементов,
называется пустым. От массивов множества отличаются тем, что количество элементов в нем не
постоянно. Его можно расширять и сокращать по ходу выполнения программы.
Описание типа производится в разделе TYPE.
Структура:
<Имя идентификатора>=SET of <имя типа> ;
где <Имя идентификатора> - правильный идентификатор Турбо Паскаля;
<имя типа> - тип элементов множества, в качестве которого может
использоваться любой порядковый тип, кроме WORD, Integer, LogInt,
ShortInt.
пример: TYPE dchar=SET of '1'..'9'; {базовый символьный тип-диапазон}
digit=SET of 0..9;
Переменные этого типа описываются в разделе
VAR S1,S2,S3:dchar; S4,S5,S6,S7:digit;
Для задания множества может использоваться конструктор множества: список (спецификаций) элементов
множества, отделенных друг от друга запятыми; список заключается в квадратные скобки. Спецификациями
элементов м.б. константы или выражения базового типа, а также пример:
S1:=['1','2','3']; S4:=[0..3,7];
S2:=['2','1','3']; S5:=[4,6];
S3:=['1','2']; S6:=[3..8]; S7:=[]; (пустое)
Два множества считаются эквивалентными тогда и только тогда, когда все их
элементы одинаковы причем порядок следования в множестве их безразличен. (S1 и S2 эквивалентны).Если все элементы
одного множества входят в другое множество то говорят, что первое включено во второе. (S3 включено в S1).Пустое множество включено в любое другое.
Над множествами определены следующие операции:
1. * пересечение множеств; результат содержит элементы, общие
для обоих множеств. (S4*S6 содержит [3,7]; S4*S5 образует пустое мн.).
2. + объединение множеств, результат содержит элементы первого
множества, дополненные недостающими элементами второго.
S4+S5 содержит [0,1,2,3,4,6,7] S5+S6 содержит [3,4,5,6,7,8]
3. - разность множеств, результат содержит элементы из первого
множества, которые не принадлежат второму.
S6-S5 содержит [3,5,7,8])
S4-S5 содержит [0,1,2,3,7]) []-S4 даст [].
4. Операции отношений:
= операция эквивалентности; возвращает значение TRUE, если оба
множества эквивалентны; (S1:=S2; ['1','2','3']) =['2','3','1']
проверка неэквивалентности; (TRUE, если множества неэквивалентны);
[1,2]<>[1] S3<>S2
>= проверка вхождения (TRUE, если второе множество входит в первое;
in - проверка принадлежности. Структура этой бинарной операции:
in ;возвращает TRUE, если выражение имеет значение, принадлежащее множеству.
пример:
3 in S6 TRUE; [] in [0..5] [] in S5
2*2 in S4 FALSE;
Множества имеют компактное машинное представление. Недостаток: невозможность вывода множества на экран,
т.к. отсутствует механизм изъятия элемента из множества. Ввод множества возможен только поэлементно.
пример: Можно тип объявлять при описании переменных
VAR S:SET of char; {переменная-множество}
C: char; {элемент множества}
Begin
S:=[]; S:=#0; {обнуление значений}
while C '.' do {цикл до ввода "."}
begin
readln(C); {чтение символа в с}
S:=S+[C]; {добавление его к S}
end; ...
S:=S-['.']; {исключение точки}
End. {Смотри задание на л.р. N 12 }
34. Оператор
выбора CASE (варианта). Комментарии.
CASE<ключ выбора> OF
Const1:оператор;
Const2:оператор;
ELSE: оператор;
END;
35. Записи.
Вложенные записи. Записи с вариантами.
Запись – это структура данных, состоящая из фиксированного числа компонент, называемых полями записи.
В отличие от массива компоненты могут быть различного типа. Поля именуются:
<имя типа>=RECORD<определение полей>END.
Type
Bd = record
D,m: byte;
Y: word
Var a,b: bd;
a::=8;
a.day:=27;-доступ к компоненту
Для упрощения доступа к полям записи используют оператор записи With
With<переменная>do<оператор>;
With c.bp do month:=9;
With c do with bp do month:=9;
c.bp.month:=9;
Вариантные поля
Type f= record
N: string;
Case byte of
0:(bp: string[30]);
1:(c: string[10],e: string[20],ed:1..31)
end;
Имена должны быть уникальны, хотя возможно повторение на различных уровнях
Вложенные поля:
Type bd =record
D,m: byte;
X: word;
End;
Var c: record;
Name: string;
Db: bd;
Begin if c.db.year=1939 then………..
End.
В качестве ключа переменная:
Type rec2=record
C: LongInt;
Case x: byte of
1: (d: word);
2: (e:record
case boolean of
3: (f: real);
3: (g: single);
‘3’: (c: word);
end;
end;
36.
Вещественный тип. Операции и функции для вещественного типа.
Вещественный тип определяет число с некоторой конечной точностью, зависящей от внутреннего формата числа
Длина название кол-во знаковых цифр диапазон десятичного порядка
байт
6 real 11..12 -39..38
8 couble 15..16 -324..308
10 extended 19..20 -4951..4932
8 comp 19..20 -2*10^63+1 .. 2*10^63-1
функции
ABS(X), ARCTAN(x), COS(X), EXP(X), FRAC(X), INT(X),LN(X), SIN(X), ROUND(X),SQR(X),SQRT(X) И Т.Д.
37. 38.
39. Файловый тип. Файлы. Требования к
имени. Связывание. Текстовые файлы. Ввод (вывод) информации из файла (в файл,
устройство) Типизированные файлы и нетипизированные файлы.
Общие процедуры для работы с файлами
_____________________________________________________________
|Assign(Var f,FileName:String) - Cвязывание ф.п.f с файлом FileName
|RESET(Var f) | Открытие файла с логическим именем f для чтения |
|REWRITE(Var f) Открытие файла с лог. именем f для записи |
| CLOSE(f) | Закрытие файла с лог. именем f |
|Erase(Var f) | Удаление файла (стирание) с диска |
|Rename(f, NewName:String)|Переименовывает физический файл |
| EOF(f) | Функция тестирования конца файла |
|FLUSH()| Очищает внутренний буфер файла |
-------------------------------------------------------------
ТЕКСТОВЫЕ ФАЙЛЫ
Это файлы последовательного доступа.
Они предназначены для хранения текстовой информации. Компоненты (запи-
си) текстового файла могут иметь переменную длину.
Для доступа к записям файла применяются процедуры
READ, READLN, WRITE, WRITELN.
Текст-ориентированные процедуры и функции
____________________________________________________________
| процедуры | пояснения |
| и функции | (действия) |
|-------------|----------------------------------------------|
|Append |Процедура открывает уже существующий файл f|
| () |для дозаписи в конец файла |
|пр:Append(f) | (для его расширения) |
|SeekEOLN |Функция пропускает все пробелы и знаки табуля-|
| () |ции до первого признака EOLN или первого зна-|
| логич.типа |чащего символа. Возвращает значение TRUE, если|
пр:SeekEOLN(f)|обнаружен маркер конца файла или маркер конца |
| |строки. Если ф.п. опущена, |
| |функция проверяет стандартный файл INPUT. |
| | |
|SeekEOF |Функция пропускает все пробелы,знаки табуляции|
| () |и маркеры конца строк до маркера конца файла|
|пр:SeekEOF(f)|или первого значащего символа. Если маркер об-|
| |наружен, возвращает значение TRUE. |
|EOLN ()|Функция возвращает значение TRUE,если во вход-|
| логич.типа | ном файле f достигнут маркер EOLN или |
|пр: EOLN(f) | EOF; FALSE - в противном случае. |
|_____________|______________________________________________|
Типизированные файлы
позволяют организовать прямой доступ к каждой из компонент (по его по-
рядковому номеру). Описание файловой переменной
Var ft: file of ;
Перед первым обращением к процедурам ввода-вывода указатель файла
стоит в его начале и указывает на 1-ю компоненту с номером 0. После
каждого чтения или записи указатель сдвигается с следующему компоненту
файла. Переменные в списках в/в должны иметь тот же тип, что и компо-
ненты файла.
Процедуры и функции для работы с типизированными файлами
____________________________________________________________
| процедуры | пояснения |
| и функции | (действия) |
|-------------|----------------------------------------------|
READ(,); Процедура
Обеспечивает чтение очередных компонентов файла
WRITE(,) используется для записи новых
компонент в файл; в качестве элементов вывода
м.б. выражение.
SEEK(,) - смещает указатель
файла к компоненту с ;
- выражение типа LONGINT.
(К текстовым файла применять нельзя.)
FILESIZE) Функция возвращает количество компонент,
содержащихся в файле.(Типа LongInt )
Функция FILEPOS() возвращает порядковый номер компо-
ненты файла, доступной для чтения или записи
(который будет обрабатываться следующей операцией в/в).
( Процедура CLOSE () - закрытие файла. )
|-------------|----------------------------------------------|
- содержит одну или более переменных такого
же типа, что и компоненты файла,
- файловая переменная д.б. объявлена предложением FILE OF
и связана с именем файла процедурой ASSIGN. Файл необходимо открыть
процедурой RESET для чтения.
Если файл исчерпан, обращение к READ вызовет ошибку В/В
Чтобы переместить указатель в конец файла можно написать
Пр. Seek(f,FileSize(f)) ; где f - файловая переменная
Нетипизированные файлы
Обьявляются без указания типа файла:
TYPE ftype=file; или VAR fn: file;
Для данных файлов не указывается тип компонентов, что делает их сов-
местимыми с любыми другими файлами. Позволяет организовать высокоско-
ростной обмен данными между диском и памятью.
При инициализации нетипизированных файлов процедурами RESET и
REWRITE указывается длина записи нетипизированного файла в байтах.
пример: VAR f:file; ...
ASSIGN (f,'a.dat');
RESET (f,512);
\ длина записи
Длина файла может быть представлена выражением типа WORD; если пара-
метр длины опущен, подразумевается длина 128 байт; максимальная длина
65535 байт.
Для обеспечения максимальной скорости обмена данными следует за-
давать длину, кратную длине физического сектора дискового носителя
(512 байт). Кроме того, фактически пространство на диске выделяется
любому файлу порциями - кластерами, которые в зависимости от типа дис-
ка могут занимать 2 и более смежных секторов. Как правило, кластер
м.б. прочитан или записан за один оборот диска, поэтому наивысшую ско-
рость обмена данными можно получить, если указать длину записи, равную
длине кластера.
При работе с нетипизированными файлами Могут применяться все
рассмотренные процедуры и функции, доступные типизированным файлам, за
исключением READ и WRITE, которые для чтения и записи заменяются соот-
ветственно высокоскоростными процедурами BlockREAD и BlockWRITE.
BlockREAD(,,,[,Var])
BlockWRITE(,,,[,Var])
где - имя переменной, которая будет участвовать в обмене дан-
ными с дисками;
- количество записей, которые д.б. прочитаны или записаны за одно
обращение к диску;
- необязательный параметр, содержащий при выходе из процедуры ко-
личество фактически обработанных записей.
За одно обращение к процедурам м.б. передано N*r байт, где r -
длина записи нетипизированного файла. Передача идет, начиная с 1-го
байта переменной .
После завершения процедуры указатель смещается на записей.
Процедурами SEEK, FilePos и FileSize можно обеспечить доступ к любой
записи нетипизированного файла.
40.
Библиотечный модуль GRAPH. Графические возможности ТП.
GRAPH - представляет собой библиотеку подпрограмм, обеспечивающую полное управление графическими режимами для различных адаптеров дисплеев:
CGA, EGA, VGA... Содержит 78 процедур и функций (как базовых - рисование точек, линий, окружностей, прямоугольников),
так и расширяющих возможности базовых (многоугольники, сектора, дуги, закрашивание фигур, вывода текста и т.д.).
Для запуска программы с использованием модуля GRAPH необходимо,
чтобы в рабочем каталоге находились графические драйверы с расширением .BGI, также должен быть доступен
компилятору модуль GRAPH.TPU.
Файл BGI - графический интерфейс. Он обеспечивает взаимодействие
программ с графическими устройствами.
В начале программы модуль GRAPH должен быть подключен
PROGRAM
USES GRAPH;
описание меток, переменных программы, в частности
VAR driver, Mode: integer;
Begin
Далее инициализируется графический режим работы процедурой
InitGraph(,:integer;
: string);
Графическая информация на экране дисплея отражается совокупностью
светящихся точек - ПИКСЕЛЕЙ.
Режим по вертикали: 0 - 200 пикселей (4 страницы),
1 - 350 пикселей (2 страницы), 2 - 480 пикселей (1 страница).
Режим 2 (640х480, 16 цветов,1 страница)
В текстовом режиме координаты верхнего угла (1,1).
центр (319,239)
нижнего (639,479)
Тип драйвера допускается указывать =0, тогда он устанавливается
по результатам тестирования (авто определение). Путь определяет маршрут поиска графического драйвера.
Пример:
USES GRAPH;
Const driver, mode: intGRAPH - представляет собой библиотеку подпрограмм, обеспечивающую полное управление графическими режимами для различных
адаптеров дисплеев: CGA, EGA, VGA... Содержит 78 процедур и функций (как базовых - рисование точек, линий,
окружностей, прямоугольников), так и расширяющих возможности базовых (многоугольники, сектора, дуги,
закрашивание фигур, вывода текста и т.д.).
Для запуска программы с использованием модуля GRAPH необходимо,
чтобы в рабочем каталоге находились графические драйверы с расширением .BGI, также должен быть доступен
компилятору модуль GRAPH.TPU.
Файл BGI - графический интерфейс. Он обеспечивает взаимодействие
программ с графическими устройствами.
В начале программы модуль GRAPH должен быть подключен
PROGRAM
USES GRAPH;
описание меток, переменных программы, в частности
VAR driver, Mode: integer;
Begin
Далее инициализируется графический режим работы процедурой
InitGraph(,:integer;
:string);
Графическая информация на экране дисплея отражается совокупностью
светящихся точек - ПИКСЕЛЕЙ.
Режим по вертикали: 0 - 200 пикселей (4 страницы),
1 - 350 пикселей (2 страницы), 2 - 480 пикселей (1 страница).
Режим 2 (640х480, 16 цветов,1 страница)
В текстовом режиме координаты верхнего угла (1,1).
центр (319,239)
нижнего (639,479)
Тип драйвера допускается указывать =0, тогда он устанавливается
по результатам тестирования (авто определение). Путь определяет маршрут поиска графического драйвера.
Пример:
USES GRAPH;
Const driver, mode: integer;
Begin
driver:=VGA; (9)
mode:=VGAH; (2)
InitGraph(driver, mode, 'e:\TP\BGI'); тип string.
DetectGraph(var Diver, Mode: integer) - возвращает тип драйвера и текущий режим его работы.
Основные цвета задаются от 0 до 15:
0- черный 8 - темно-синий
1- синий 9 - ярко-синий
2- зеленый 10 - ярко-зеленый
3- голубой 11 - ярко-голубой
4- красный 12 - розовый
5- фиолетовый 13 - малиновый
6- коричневый 14- желтый
7 - светло-серый 15- белый.
Если Х и У вещественные , то их нужно преобразовать к целым координатам (в пределах раздела экрана). Для
этого используются функции ROUND или TRUNC прямого преобразования к целому значению LineTo(trunc(x),trunc(y));
Также необходимо следить, чтобы значения не выходили за пределы
экрана (рассчитывайте коэффициенты увеличения или уменьшения и пара-
метры смещения)
ПРОЦЕДУРЫ И ФУНКЦИИ модуля GRAPH
установочные
ClearDevice - Очищает экран и помещает курсор в точку (0,0);
SetViewPort(x1,y1,x2,y2:integer; Clip: boolean) - Устанавливает
текущее окно для графического вывода. X1,y1 – координата верхнего левого угла; x2,y2 - координата нижнего
правого угла. Если Clip=true, то все изображения отсекаются на границах вывода;
ClearViewPort - Очищает текущее окно;
GetMax X: integer - возвращает максимальную горизонтальную координату
графического экрана;
GetMax Y :integer - возвращает максимальную вертикальную координату
графического экрана;
Get X: integer - возвращает координату Х текущего указателя в окне;
Get Y: integer - возвращает координату Y курсора в окне;
SetLineStyle(Line, Pattern, Thickness: word) - Устанавливает стиль
(0..4), шаблон штриховки (0..12) и толщину (1-ноpм, 3-утpоенная);
SetFillStyle(Pattern, Color: word) - Устанавливает образец штриховки и
цвет (0..15 и 128-меpцание);
SetGraphMode(Mode: integer) - Устанавливает новый графический режим и
очищает экран;
SetColor(Color: word) - Устанавливает основной цвет, которым выполняется рисование (0..15);
SetBkColor(Color: word) - Установка цвета фона.
Гpафические примитивы
PutPixel(X,Y: integer; Color: word) - Выводит точку цветом Color с координатой X,Y;
LineTO(X, Y: integer) - Рисует линию от текущего указателя к точке с координатой Х,У;
LineRel(DX, DY: integer) - Рисует линию от текущего указателя к точке, заданной приращением координат;
Line(X1,Y1,X2,Y2:integer) - Рисует линию от точки (X1,Y1) к точке с
координатой Х2,У2;
MoveTO(X, Y: integer) - Смещает текущий указатель к точке с координатой Х,У;
MoveRel(DX, DY: integer) - Смещает текущий указатель к точке, заданной
приращением координат;
Rectangle(X1,Y1,X2,Y2:integer) - Рисует прямоугольник, используя
текущий цвет и тип линии по верхней левой и нижней правой точкам;
Bar(X1,Y1,X2,Y2:integer) - Рисует закрашенный прямоугольник, используя установку SetFillStyle;
Bar3D(X1,Y1,X2,Y2:integer;Depth:word;Top:Bolean) - Рисует закрашенный паpаллелипипед. Depth - глубина в Pixel (1/4 ширины).
Если Тор=True, то рисуется верхняя грань пеpеллелипипеда;
Circle(X,Y:integer;R:word) - Рисует окружность радиуса R, используя
X,Y как координаты центра;
Fillellipse(X,Y: integer; XR,YR: word) - Рисует защтpихованный эллипс,
используя X,Y как центр и XR,YR как горизонтальный и
вертикальный радиусы.
RestorCRTMode - Восстанавливает текстовый режим работы экрана;
OutText(Text: string) - Выводит текстовую строку на экран.
OutTextXY(X,Y: integer; Text: string) - Выводит текст в заданное
место экрана.
Пример программы построения графика функции у=2+х*х.
program graphik; {файл grafikf.pas}
uses graph; {подключение модуля GRAPF}
var a,b,x,y: integer; {a,b-переменные, определяющие тип драйвера и
видеорежим соответственно}
begin
detectgraph(a,b); {авто определение типа драйвера и видеорежима}
initgraph (a,b,'E:\TP\BGI'); {инициализация графического режима}
setgraphmode(2); {установка нового режима (2), очистка экрана}
setBKcolor(0); {основной цвет фона - черный}
setcolor(4); {основной цвет рисования - красный}
moveTO(100,100); {смещает курсор}
lineRel(50,50); {вычерчивание линии по приращению от текущего
указателя}
readln; {пауза до нажатия клавиши }
setcolor(2); {основной цвет рисования - зеленый}
line(100,100,100,50);{рисует линию от т.Х1,У2 до т.Х2,У2}
readln; {пауза до нажатия }
setcolor(5); {основной цвет рисования - фиолетовый}
putPixel(0,0,12); {выводит точку цветом 12 с координатой 0,0}
readln; {пауза до нажатия }
moveTO(1,2); {смещает курсор к точке с координатой 1,2}
for x:=0 to 20 do
begin
y:=2+ x*x;
lineTO(x,y); {рисует линию от текущего
указателя к точке с координатой Х,У}
end;
readln; {пауза до нажатия ввода}
Settextstyle(1,0,5);
OutTextXY(50,400,'график функции у=2+х*х'); {выводит текст в
заданное место экрана}
readln; {пауза до нажатия }
putPixel(639,479,14);{выводит точку цветом 14 с координатой 639,479}
readln; {пауза до нажатия }
closegraph;{закрывает графический режим и восстанавливает текстовый}
end.
Begin
driver:=VGA; (9)
mode:=VGAH; (2)
InitGraph(driver, mode, 'e:\TP\BGI'); тип string.
DetectGraph(var Diver, Mode: integer) - возвращает тип драйвера и текущий режим его работы.
Основные цвета задаются от 0 до 15:
0- черный 8 - темно-синий
1- синий 9 - ярко-синий
2- зеленый 10 - ярко-зеленый
3- голубой 11 - ярко-голубой
4- красный 12 - розовый
5- фиолетовый 13 - малиновый
6- коричневый 14- желтый
7 - светло-серый 15- белый.
Если Х и У вещественные , то их нужно преобразовать к целым координатам (в пределах раздела экрана). Для
этого используются функции ROUND или TRUNC прямого преобразования к целому значению LineTo(trunc(x),trunc(y));
Также необходимо следить, чтобы значения не выходили за пределы
экрана (рассчитывайте коэффициенты увеличения или уменьшения и пара-
метры смещения)
ПРОЦЕДУРЫ И ФУНКЦИИ модуля GRAPH
установочные
ClearDevice - Очищает экран и помещает курсор в точку (0,0);
SetViewPort(x1,y1,x2,y2:integer; Clip: boolean) - Устанавливает
текущее окно для графического вывода. X1,y1 - координата
верхнего левого угла; x2,y2 - координата нижнего правого угла.
Если Clip=true, то все изображения отсекаются на границах вывода;
ClearViewPort - Очищает текущее окно;
GetMaxX: integer - возвращает максимальную горизонтальную координату
графического экрана;
GetMaxY: integer - возвращает максимальную вертикальную координату
графического экрана;
GetX: integer - возвращает координату Х текущего указателя в окне;
GetY: integer - возвращает координату Y курсора в окне;
SetLineStyle(Line, Pattern, Thickness: word) - Устанавливает стиль
(0..4), шаблон штриховки (0..12) и толщину (1-ноpм, 3-утpоенная);
SetFillStyle(Pattern, Color: word) - Устанавливает образец штриховки и
цвет (0..15 и 128-меpцание);
SetGraphMode(Mode: integer) - Устанавливает новый графический режим и
очищает экран;
SetColor(Color: word) - Устанавливает основной цвет, которым выполняется рисование (0..15);
SetBkColor(Color: word) - Установка цвета фона.
Гpафические примитивы
PutPixel(X,Y: integer; Color: word) - Выводит точку цветом Color с координатой X,Y;
LineTO(X,Y: integer) - Рисует линию от текущего указателя к точке с координатой Х,У;
LineRel(DX,DY: integer) - Рисует линию от текущего указателя к точке, заданной приращением координат;
Line(X1,Y1,X2,Y2:integer) - Рисует линию от точки (X1,Y1) к точке с
координатой Х2,У2;
MoveTO(X,Y: integer) - Смещает текущий указатель к точке с координатой Х,У;
MoveRel(DX,DY: integer) - Смещает текущий указатель к точке, заданной
приращением координат;
Rectangle(X1,Y1,X2,Y2:integer) - Рисует прямоугольник, используя
текущий цвет и тип линии по верхней левой и нижней правой точкам;
Bar(X1,Y1,X2,Y2:integer) - Рисует закрашенный прямоугольник, используя установку SetFillStyle;
Bar3D(X1,Y1,X2,Y2:integer;Depth:word;Top:Bolean) - Рисует закрашенный паpаллелипипед. Depth - глубина в Pixel (1/4 ширины).
Если Тор=True, то рисуется верхняя грань пеpеллелипипеда;
circle(X,Y:integer;R:word) - Рисует окружность радиуса R, используя
X,Y как координаты центра;
Fillellipse(X,Y: integer; XR,YR: word) - Рисует защтpихованный эллипс,
используя X,Y как центр и XR,YR как горизонтальный и
вертикальный радиусы.
RestorCRTMode - Восстанавливает текстовый режим работы экрана;
OutText(Text: string) - Выводит текстовую строку на экран.
OutTextXY(X,Y: integer; Text: string) - Выводит текст в заданное
место экрана.
Пример программы построения графика функции у=2+х*х.
program graphik; {файл grafikf.pas}
uses graph; {подключение модуля GRAPF}
var a,b,x,y: integer; {a,b-переменные, определяющие тип драйвера и
видеорежим соответственно}
begin
detectgraph(a,b); {авто определение типа драйвера и видеорежима}
initgraph(a,b,'E:\TP\BGI'); {инициализация графического режима}
setgraphmode(2); {установка нового режима (2), очистка экрана}
setBKcolor(0); {основной цвет фона - черный}
setcolor(4); {основной цвет рисования - красный}
moveTO(100,100); {смещает курсор}
lineRel(50,50); {вычерчивание линии по приращению от текущего указателя}
readln; {пауза до нажатия клавиши }
setcolor(2); {основной цвет рисования - зеленый}
line(100,100,100,50);{рисует линию от т.Х1,У2 до т.Х2,У2}
readln; {пауза до нажатия }
setcolor(5); {основной цвет рисования - фиолетовый}
putPixel(0,0,12); {выводит точку цветом 12 с координатой 0,0}
readln; {пауза до нажатия }
moveTO(1,2); {смещает курсор к точке с координатой 1,2}
for x:=0 to 20 do
begin
y:=2+ x*x;
lineTO(x,y); {рисует линию от текущего указателя к точке с координатой Х,У}
end;
readln; {пауза до нажатия ввода}
Settextstyle(1,0,5);
OutTextXY(50,400,'график функции у=2+х*х'); {выводит текст в заданное место экрана}
readln; {пауза до нажатия }
putPixel(639,479,14);{выводит точку цветом 14 с координатой 639,479}
readln; {пауза до нажатия }
closegraph;{закрывает графический режим и восстанавливает текстовый}
end.
41.
Библиотечный модуль CRT. Работа с клавиатурой, экраном, звуковым генератором.
Модуль CRT включает процедуры и функции, которые управляют текстовым режимом
работы дисплея. С помощью подпрограмм модуля можно перемещать курсор
по экрану дисплея, менять цвет выводимых символов и фона, создавать
окна на экране, управлять звуком, работать с клавиатурой.
Функции управления клавиатурой:
KeyPressed: Boolean; - возвращает True, если в текущий момент на клавиатуре была нажата клавиша, иначе False. Не приостанавливает выполнение
программы. Используется при организации работы циклов.
ReadKey: Char; - читает и возвращает в программу символ с клавиатуры (без отображения на экране). Приостанавливает исполнение программы
до нажатия на любую клавишу символа. Используется в операторах IF для проверки символов.
WhereX: Byte; - возвращает горизонтальную координату текущей позиции курсора относительно окна.
WhereY: Byte; - возвращает вертикальную координату текущей позиции курсора относительно окна.
Процедуры управления дисплеем
AssignCrt(Var F: Text); - связывает с файловой переменной устройство CON (клавиатуру для ввода и дисплей для вывода).
ClrEol; - удаляет все символы справа от курсора до конца строки без перемещения курсора.
ClrScr; - очищает экран (окно на экране) и помещает курсор в верхний левый угол.
Delay(D: word); - приостанавливает работу программы на D миллисекунд.
GotoXY(X,Y: byte); - перемещает курсор в нужное место экрана (окна). Левый верхний угол экрана (окна) имеет координаты (1,1). Отсчет координат идет слева направо и сверху
вниз. Количество символов в строке и самих строк зависит от типа дисплея (обычно 25 строк и 80 символов).
InsLine; - вставляет пустую строку в позицию курсора.
HighVideo; - устанавливает высокую яркость символов.
LowVideo; - устанавливает низкую яркость символов.
NormVideo; - устанавливает нормальную яркость символов.
Window(X1,Y1,X2,Y2:byte); - определяет размеры окна на экране для вывода текста. X1,Y1 - координаты левого верхнего угла, X2,Y2 - правого нижнего
угла.
TextBackGround(Color: byte); - устанавливает цвет фона экрана (окна) от 0 (черный) до 15 (белый).
TextColor(Color: byte); - устанавливает цвет символа.
TextMode(Mode: word); - устанавливает нужный текстовый режим:0,1,2...
Управление звуковым генератором
Sound(F: word); - включает звук генератора, F - частота звука в герцах.
Delay(T: word); - устанавливает продолжительность звучания в миллисекундах.
NoSound; - выключает звук генератора.
42.
Процедурные типы. Параметры-функции. Параметры-процедуры.
Процедурные типы – гибкое средство для передачи функций и процедур в качестве фактических параметров
обращения к другим процедурам и функциям.
Type p1=procedure(a, b, c: real; var d: real);
F= function: string;
Любые процедуры или функции, передаваемые в качестве фактических параметров объявляется директивой far.
Стандартные процедуры или функции ТП могут передаваться рассмотренным образом. В программе могут быть
объявлены переменные процедурных типов.
Var p1:proc1;
F: func2;
Ap: array [1..n] of proc1;
Переменные процедурных типов допускается присваивать в качестве значений имена соответствующих
подпрограмм=> переменные становятся синонимом имени подпрограммы.
43. Адресный
тип. Динамическая память. Адреса и указатели.
Динамическая память – это оперативная память ПК, представляемая программно при её работе , за вычетом
сегмента данных 164 Кбайта ,стёка(обычно 16 Кбайт) и собственно тела программы (>200-300 Кбайт)
Д.п. - это практически единственная возможность обработки массивов данных большой размерности.
Сегмент данных - это непрерывная область оперативной памяти в которой размещаются все переменные,
объявленные в программе.
Д. размещение данных – означает использование Д.П. непосредственно при работе программы.
ОЗУ ПК представляет собой совокупность ячеек для хранения информации - байтов, каждый из
которых имеет собственный номер. Эти номера – называются адресами ,позволяющими обращаться к любому байту памяти.
Указатели – гибкое средство управления Д.П.. Это переменная, которая в качестве своего
значения содержит адрес байта памяти. В ПК адреса задаются сегментами и 16 разрядными смещениями.
Сегмент – это участок памяти имеющий длину 65536(64Кбайта) и начинается с физического адреса , кратного 16.
Смещение – указывает, сколько байт от начала сегмента нужно отступить, чтобы обратиться к нужному адресу.
Адресное пространство 1 Мбайт – стандартная память ПК. Для адресации в пределах 1 Мбайта нужно 20 двоичных разрядов, которые получаются из 2-х 16 разрядных
слов (сегмента и смещения типа word ) =>содержимое сегмента смещается на 4 разряда , освободившиеся правые заполняются
нулями.
Структура памяти: SYS область – КУЧА – SYS область
I^:=2;{в область памяти I заносится 2}
Функции:
ADDR (x) – возвращает результат типа pointer,в котором содержится адрес аргумента,x- любой объект программы (переменная , процедура, функция)
CSEG- возвращает значение, хранящееся в регистре CS микропроцессора. Результат в слове типа word.
DSEG - возвращает значение, хранящееся в регистре DS микропроцессора. Результат в
слове типа word.
MAXAVAIL-возвращает размер в байтах наибольшего непрерывного участка кучи .MAXAVAIL(LONGINT).
За вызов процедуры NEW или GETMEM нельзя зарезервировать памяти больше, чем значение, возвращаемое этой функцией.
MEMAIAIL(LONGINT)- возвращает размер в байтах общего свободного пространства кучи
OFS(Х)-возвращает значение типа WORD, содержащее смещения адреса указанного объекта.(Х)-выражение любого типа или процедура.
PTR(seg , ofs) - возвращает значение типа POINTER, по заданному сегменту и смещению
SEG(X) - возвращает значение типа WORD, содержащее сегмент адреса указанного объекта.
SIZEOF(X)- возвращает длину в байтах внутреннего представления указанного объекта.X- имя переменной, функции или
типа.
Процедуры:
DISPOSE- возвращает в кучу фрагмент динамической памяти ,который был ранее зарезервирован за
типизированным указателем.
DISPOSE(TP) – типизированный указатель
FREEMEM - возвращает в кучу фрагмент динамической памяти ,который был ранее зарезервирован за
нетипизированным указателем
FREEMEM(P,SIZE) – P-нетипизированный указатель ,SIZE-длинна освобождающегося размера.
GETMEM(P,SIZE) – резервирует за нетипизированным указателем фрагмент Д,П, требуемого размера(не
более 65521)
MARK(PTR) – запоминает текущее значение указателя кучи. PTR- указатель любого типа
NEW - резервирует фрагмент кучи для размещения переменной .
NEW(TP) - тип указатель
RELISE(PTR) – освобождает участок кучи .PTR – указатель любого типа,в котором предварительно было
сохранено процедурой MARK значение указателя кучи.
Д.П. широко используется для временного запоминания данных при работе с графикой и звуком в ПК.
44. Среда ТП.
Основные выполняемые функции. Система меню (работа с файлами, запуск,
компиляция, отладка (Debug), работа с окнами).
Меню run
Run- запуск на исполнение
Step over-пошаговое исполнение программы
Trace into- пошаговое исполнение программы только подпрограммы выполняются оператор за оператором
Go to cursor – выполнение до курсора
Program reset- завершение процесса отладки
Parameters- окно для ввода параметров для отладки
Меню compile
Compile- компиляция файла, находящегося в активном окне редактирования.
Make – условная компиляция изменённых модулей в ЕХЕ файл
Build- безусловная компиляция многомодульной программы с созданием ЕХЕ файла
Target…-выбор в окне таргет целевой платформы для приложения
Primary file…-открывает окно для указания главного файла, компилируемой программы.
Меню Debug:
Breakpoints- установка точек условного и безусловного перехода
Call stack – показывает процедуры выполнявшиеся ранее.
Register – информация о регистрах процессора
Watch – окно значений переменных
Output – окно результатов работы программы
User screen – просмотр результатов включая графику
Evaluate/ modify.. – окно изменения значений выражений
Add watch – окно значений и переменных вовремя отладки
Add breakpoint.. – окно установки точек прерывания программы
45. Модульное
программирование. Оформление модуля в ТП.
Модульное программирование – это организация программы как совокупности небольших независимых блоков,
называемых модулями, структура и поведение которых подчиняется определенным правилам.
Модуль – это автономно компилируемая программная единица, включающая в себя различные компоненты раздела описаний (типы,
константы, переменные, процедуры, функции) и, возможно, некоторые исполняемые операторы инициирующей части.
Использование модулей – прекрасный инструмент для разработки библиотек прикладных
программ и мощное средство модульного программирования.
ТП размещает программный код модулей в отдельном сегменте памяти.
Структура модулей:
UNIT<имя> -зарезервированное слово (единица), начинает заголовок модуля
INTERFACE<интерфейсная часть> - начинает интерфейсную часть
IMPLIMENTAITION<исполняемая часть>
BEGIN <инициируемая часть>END.
Модуль состоит из заголовка и трёх частей, любая из которых может быть пуста.
В ТП возможно осуществлять подключение средств, облегчающих разработку крупных программ.
Имя модуля должно совпадать с именем файла, в котором находится исходный текст модуля (исходник). Имя модуля служит для связи с др. модулями и
основной программой. Связь устанавливается спец. объявлением:
USES<имя вспомогательного модуля > - список связываемых модулей.
Интерфейсная часть –содержит объявление всех глобальных объектов модуля (типов, констант, переменных и
программ), которые должны доступными основной программе или другим модулям. В интерфейсной части указываются только их заголовки. Объявление подпрограмм в
интерфейсной части авто компилируется с использованием дальней модели памяти {far и near}, что
обеспечивает доступ к подпрограмме из основной программы и др. модулей.Const, var объявленные в интерфейсной части модуля ,
как и глобальные константы и переменные помещаются в общий сегмент данных(max 65536 байт).
Исполняемая часть – содержит описания программ , объявленных в интерфейсной части. Разрешается объявление локальных для модуля
вспомогательных типов, констант, переменных. Заголовок – обязательно, список формальных параметров можно опустить. Все параметры размещаются в сегменте
данных.
Инициирующая часть – завершает модуль, может отсутствовать или быть пустой. Размещение исполняемых
операторов, фрагменты программы. Операторы исполняются до передачи управления основной программе и для подготовки её
работы. При пустой инициирующей части лучше всего её попустить.
Стандартные модели:
SYSTEM,DOS,CRT,GRAPH,PRINTER,OVERLAY,TURBO3,GRARH3
|