Реферат: Генерация дидактических материалов по математике Реферат: Генерация дидактических материалов по математике
Реферат: Генерация дидактических материалов по математике РЕФЕРАТЫ РЕКОМЕНДУЕМ  
 
Тема
 • Главная
 • Авиация
 • Астрономия
 • Безопасность жизнедеятельности
 • Биографии
 • Бухгалтерия и аудит
 • География
 • Геология
 • Животные
 • Иностранный язык
 • Искусство
 • История
 • Кулинария
 • Культурология
 • Лингвистика
 • Литература
 • Логистика
 • Математика
 • Машиностроение
 • Медицина
 • Менеджмент
 • Металлургия
 • Музыка
 • Педагогика
 • Политология
 • Право
 • Программирование
 • Психология
 • Реклама
 • Социология
 • Страноведение
 • Транспорт
 • Физика
 • Философия
 • Химия
 • Ценные бумаги
 • Экономика
 • Естествознание




Реферат: Генерация дидактических материалов по математике

Генерация дидактических материалов по математике

В те времена, когда я преподавал математику в школе (1990-1997), столкнулся с проблемой отсутствия достаточного количества дидактических материалов на печатной основе для проведения занятий. В частности, при проведении контрольных работ было лишь два варианта заданий, и, естественно, ученики списывали, что, с моей точки зрения, недопустимо. Тогда я стал придумывать варианты заданий и распечатывать их с помощью старенькой пишущей машинки. Сразу замечу, что занятие это рутинное, абсолютно не творческое и скучное — придумать 20-25 однотипных вариантов с разным содержанием. Тем не менее, один год я такое практиковал.

Когда в институте меня стали учить программированию, тут же возникла идея приспособить для создания дидактических материалов компьютер. Он для этих целей идеально подходил, поскольку позволял автоматизировать не только распечатку текста, но и сам процесс его разработки. Действительно, достаточно запрограммировать образец для одного задания, и согласно ему будет получено любое количество заданий. Но и здесь были свои проблемы, связанные с тем, что сгенерированный текст DOS приходилось затем "доводить до ума" (ставить верхние и нижние индексы, рисовать дроби и т.д.) с помощью текстового редактора типа ChiWriter или Lexicon, причем конечный продукт выглядел в результате достаточно нелепо и коряво.

Технология окончательно сформировалась в 1994 г., когда я познакомился с системой форматирования текстов LaTeX, позволяющей форматировать тексты, содержащие математические формулы любой сложности. Обычно в основу самостоятельной или контрольной работы закладываются уже существующие дидактические материалы к тому или иному школьному учебнику математики, и по этому образу и подобию готовится работа, где данные в каждом из вариантов различные. Таким образом складывается иллюзия наличия такого же количества вариантов, сколько учеников в классе.

Наличие отдельного напечатанного варианта при проведении контрольной или самостоятельной работы имеет ряд преимуществ перед отсутствием такового: во-первых, решается проблема списывания — каждый учащийся вынужден обрабатывать свои данные (правда, при этом можно в качестве образца использовать работу соседа, но это было и при традиционном проведении контрольной работы); во-вторых, нет необходимости перед началом урока втискивать текст контрольной работы на доску (очень не люблю писать на доске!); в-третьих, ни для кого не является секретом, что зрение большинства учащихся в настоящее время ослаблено, и им приходится подходить к доске или переспрашивать учителя для уточнения текста задания, при указанном подходе проблема снимается. Можно найти и другие достоинства, мною не отмеченные, я думаю... Есть и свои недостатки — учителю затем нужно проверить не 2 варианта, а 25-30. Не всякий при нынешней загруженности на это решится. Но при желании число существенно разных вариантов можно сократить до 5-10.

Продемонстрирую на паре-тройке примеров технологию подготовки текста в формате LaTeX.

Пример 1. Алгебраическое выражение.

Одно из наиболее часто встречающихся в 5-7 классах заданий — вычисление значения выражения. Генерируя такие выражения, нужно учитывать такие обстоятельства, как:

1) соответствие изучаемой теме и возрасту учащихся (например, в 5 классе значение выражения не должно быть равно отрицательному числу);

2) после выполнения очередного действия полученное значение должно получиться проще и приемлемым для выполнения следующего действия, где это значение используется (т.е. некоторые величины в выражении будут случайными, другие — вычисляемыми);

3) при записи десятичной дроби в школьной математике используется десятичная запятая, а при записи на компьютере — десятичная точка;

4) если в записи выражения используются десятичные дроби, то они должны быть несократимыми и правильными.

Учитывая приведенные выше соображения, покажем на примере следующего числового выражения получение его аналогов:


Проанализируем данное выражение. Его значение равно 2,32 и получается как разность двух произведений. Таким образом, значение выражения — произвольное рациональное число, модуль которого не больше 10. Значение первого и второго произведений — десятичные дроби, это соответственно 2,62 и 0,3. При генерации произведений будем ориентироваться также на десятичные значения. В первом произведении первый сомножитель — сумма обыкновенных дробей с разными знаменателями, НОД которых отличен от 1, а второй сомножитель — число, которое можно сократить с общим знаменателем первого сомножителя. Второе произведение — произведение обыкновенной и десятичной дроби, которые нужно подобрать так, чтобы результат был точной десятичной дробью.

Приступим к генерации выражения. Пусть A=НОД(B,C), где B, C — знаменатели дробей суммы. Тогда B=A*B1, C=A*C1, где B1, C1 — случайные числа. D, F — числители рассматриваемых дробей, причем D<B, F<C. Целую часть первого слагаемого можно сгенерировать случайным образом. Второй сомножитель в первом произведении получаем так: K=НОК(B,C)*R/100, 1<R<10 — случайное число.

Аналогично получаем второй сомножитель. Не нужно забывать о том, что значение выражения по абсолютной величине не должно превышать 10.

Таким образом, выражение может быть получено с помощью следующего фрагмента программы:

 B1 := 1 + Random(9);

 C1 := 1 + Random(9);

 A := 2 + Random(4); {НОД знаменателей дробей суммы}

 B := A * B1;   {Знаменатель первой дроби}

 C := A * C1;   {Знаменатель второй дроби}

 D := 1 + Random(B — 2); {Числитель первой дроби}

 F := 1 + Random(C — 2); {Числитель второй дроби}

 K := Nod(D, B); {НОД чисел D, B}

 D := D Div K; {Сокращение первой дроби}

 B := B Div K;

 K := Nod(F, C); {НОД чисел F, C}

 F := F Div K; {Сокращение второй дроби}

 C := C Div K;

 K := B * C Div Nod(B, C) * (1 + Random(7)); {Второй сомножитель

                                              в первом произведении}

 Repeat

   Repeat

    M := 3 + Random(6); {Одно из чисел, на которое будет

                         производиться сокращение во втором произведении}

    Ch1 := M * (1 + Random(3)) {Числитель второй дроби}

   Until Odd(M) and Odd(Ch1);

    Zn := M * 5; {Знаменатель первого сомножителя во втором

                  произведении}

    SS := 2 + Random(4);

    Zn1 := Stepen(2, SS); {Знаменатель второго сомножителя -

                           случайная степень числа 2}

    Ch := Zn1 Div 2; {Числитель первой дроби}

 Until (Ch < Zn) And (Ch1 < Zn1); {Повторяем генерацию дробей,

                                   пока числители не станут

                                   меньше знаменателей}

 S := Nod(Ch, Zn);

 Ch := Ch Div S; {Сокращение дроби}

 Zn := Zn Div S;

 Ch1 := Ch1 * Stepen(10, SS); {Подготовка числителя

                               второй дроби к целочисленному

                               делению}

 {Печать результата генерации в файл Name}

 WriteLn(Ch1, ' ', Zn1);

 Write(Name, '$$\left(', 1 + Random(3), '\frac{', D);

 Write(Name, '}{', B, '}+\frac{', F, '}{', C, '}\right)\cdot');

 Write(Name, K Div 100, '{,}', K Mod 100, '-\frac{', Ch);

 WriteLn(Name, '}{', Zn, '}\cdot 0{,}', Ch1 Div Zn1, '.$$')

В фрагменте программы использованы функции пользователя: Nod(A, B) — НОД(A,B); Stepen(A,B) — AB. Указанные функции должны быть описаны в программе.

Результаты работы программы для количества заданий, равного 5:

$$\left(1\frac{2}{3}+\frac{5}{8}\right)\cdot0{,}48-\frac{4}{35}\cdot 0{,}875.$$

$$\left(3\frac{1}{2}+\frac{1}{7}\right)\cdot0{,}98-\frac{8}{35}\cdot

0{,}4375.$$

$$\left(2\frac{10}{27}+\frac{1}{18}\right)\cdot2{,}7-\frac{8}{25}\cdot

0{,}3125.$$

$$\left(2\frac{1}{2}+\frac{5}{6}\right)\cdot0{,}24-\frac{4}{15}\cdot 0{,}375.$$

$$\left(1\frac{5}{6}+\frac{3}{5}\right)\cdot1{,}5-\frac{4}{35}\cdot 0{,}875.$$

Результат обработки этого файла будет следующим:


Пример 2. Квадратное уравнение.

Настоящий пример несколько проще предыдущего. Рассмотрим два случая: а) корни уравнения — целые; б) корни уравнения — обыкновенные дроби.

Как и в предыдущем случае, целесообразно идти к получению задания от ответа. Сгенерируем два корня уравнения и, используя теорему Виета, получим его коэффициенты. При генерации целых корней разумно сделать их различными и отличными от нуля. В приведенном ниже примере это задания по буквами а, б. При выводе задания в файл требуется учесть, что коэффициенты могут быть равны нулю, а также тот факт, что коэффициент, равный единице, не записывается.

Задания под в, г предполагают наличие двух различных корней, являющихся обыкновенными правильными дробями. Алгоритм получения соответствующих коэффициентов в этом случае более громоздкий, хотя в основу положена всё та же теорема Виета. Изначально опять же генерируем ненулевые различные корни уравнения, а затем на их основе получаем уравнение в целыми коэффициентами. В примере это делается поэтапно: сначала — корни уравнения; затем — коэффициенты уравнения — обыкновенные дроби, наконец, коэффициенты — целые числа, причем НОК(A, B, C) = 1.

Ниже приводятся законченный фрагмент программы , генерирующий задания, пример работы этой программы и результат обработки файла, полученного с помощью программы.

Program Kw;

Var F : Text;

  {Процедура, производящая начальные установки в формате LaTeXа}

  Procedure UST;

  Begin

   WriteLn(F, '\documentstyle[12pt,a4wide]{article}');

   WriteLn(F, '\topmargin-3cm');

   WriteLn(F, '\pagestyle{empty}');

   WriteLn(F, '\setlength{\textheight}{27cm}');

   WriteLn(F, '\setlength{\textwidth}{16cm}');

   WriteLn(F, '\begin{document}');

  END;

 {НОД}

 Function Nod (X, Y : Integer) : Integer;

  Begin

   WHILE X <> Y Do

     IF X > Y THEN X := X — Y ELSE Y := Y — X;

   Nod := X

  END;

 {НОК}

 Function NoK (X, Y : Integer) : Integer;

  Begin

   NoK := X * Y Div NoD(X, Y)

  END;

  Var X1, I, X2, A, C, B : Integer;

      Ch, Ch1, Zn, Zn1, BCh, BZn, CCh, CZn, J, V, Vsp : Integer;

Begin

    Assign(F, 't:\rustex\kw_ur.tex');

    ReWrite(F);

    UST;

    Randomize;

   {Корни уравнения (целые)}

   Repeat X1 := -10 + Random(21) Until X1 <> 0;

   Repeat X2 := -10 + Random(21) Until X2 <> 0;

   B := -(X1 + X2);

   C := X1 * X2;

   WriteLn(F, '\begin{tabular}{ll}');

   Write(F, 'а)~$x^2');

   If B <> 0

   Then Begin

         If B > 0

         Then If B <> 1 Then Write(F, '+', B) Else Write(F, '+')

         Else If B <> -1 Then Write(F, B) Else Write(F, '-');

         Write(F, 'x');

        End;

   If C <> 0 Then If C < 0 Then Write(F, C) Else Write(F, '+', C);

   WriteLn(F, '=0$;& б)~$');

   Repeat X1 := -10 + Random(21) Until X1 <> 0;

   Repeat X2 := -10 + Random(21) Until (X2 <> 0) And (X2 <> X1);

   B := -(X1 + X2);

   C := X1 * X2;

   Write(F, 'x^2');

   If B <> 0

   Then Begin

          If B > 0

          Then If B <> 1 Then Write(F, '+', B) Else Write(F, '+')

          Else If B <> -1 Then Write(F, B) Else Write(F, '-');

          Write(F, 'x');

        End;

   If C <> 0 Then If C < 0 Then Write(F, C) Else Write(F, '+', C);

   WriteLn(F, '=0$;\\');

    {Генерируем уравнения с корнями — обыкновенными дробями}

   For J := 0 To 1 Do

   Begin

   Repeat {первый корень}

     Repeat Ch := -5 + Random(11) Until Ch <> 0; {числитель}

     Zn := 2 + Random(8); {знаменатель}

     V := Nod(Abs(Ch), Zn);

     Ch := Ch Div V;

     Zn := Zn Div V

   Until (Zn > 1) And (Zn > Abs(Ch));

   Repeat {второй корень}

     Repeat Ch1 := -4 + Random(11) Until Ch1 <> 0;

     Zn1 := 2 + Random(8);

     V := Nod(Abs(Ch1), Zn1);

     Ch1 := Ch1 Div V;

     Zn1 := Zn1 Div V

   Until (Zn1 > 1) And (Zn1 > Abs(Ch1)) And (Ch * Zn1 + Zn * Ch1 <> 0);

   Vsp := Nod(Abs(Ch * Zn1 + Zn * Ch1), Zn1 * Zn);

   BCh := (Ch * Zn1 + Zn * Ch1) Div Vsp; {числитель коэффициента B}

   BZn := Zn * Zn1 Div Vsp; {знаменатель коэффициента B}

   Vsp := Nod(Abs(Ch * Ch1), Zn1 * Zn);

   CCh := Ch * Ch1 Div Vsp; {числитель коэффициента C}

   CZn := Zn1 * Zn Div Vsp; {знаменатель коэффициента C}

   A := Nok(BZn, CZn);   {A}                             

   B := BCh * A Div BZn; {B}

   C := CCh * A Div CZn; {C}

   Write(F, Chr(Ord('в') + J), ')~$', A, 'x^2');

   If B <> 0

   Then Begin 

         If B > 0

         Then If B <> 1 Then Write(F, '+', B) Else Write(F, '+')

         Else If B <> -1 Then Write(F, B) Else Write(F, '-');

         Write(F, 'x');

        End;

   If C <> 0 Then If C < 0 Then Write(F, C) Else Write(F, '+', C);

   Write(F, '=0$;');

   If J = 0 Then WriteLn(F, '&') Else WriteLn(F, '\\');

   End;

    WriteLn(F, '\end{tabular}');

    WriteLn(F);

    WriteLn(F, '\end{document}');

    Flush(F);

    Close(F)

End.

\documentstyle[12pt,a4wide]{article}

\topmargin-3cm

\pagestyle{empty}

\setlength{\textheight}{27cm}

\setlength{\textwidth}{16cm}

\begin{document}

\begin{tabular}{ll}

а)~$x^2+2x-8=0$;& б)~$

x^2-4x-45=0$;\\

в)~$49x^2-7x-6=0$;&

г)~$12x^2+16x+5=0$;\\

\end{tabular}

\end{document}


Если в приведенную выше программу внести незначительные изменения, то можно получить вариант , генерирующий логарифмические уравнения или какие-либо другие. Вот результат работы такой программы.

\documentstyle[12pt,a4wide]{article}

\topmargin-3cm

\pagestyle{empty}

\setlength{\textheight}{27cm}

\setlength{\textwidth}{16cm}

\begin{document}

\begin{tabular}{ll}

а)~$\log_{2}^2x-\log_{2}x-20=0$;& б)~$\log_{5}^2x

+7\log_{5}x+10=0$;\\

в)~$15\log_{3}^2x+22\log_{3}x+8=0$;&

г)~$27\log_{2}^2x+12\log_{2}x+1=0$;\\

\end{tabular}

\end{document}


Пример 3. Задание по теме "Тождественные преобразования алгебраических выражений". (Из книги "Сборник задач для поступающих во втузы": Учеб. пособие / В.К. Егерев, Б.А. Кордемский, В.В. Зайцев и др.; Под. ред. М.И. Сканави. — 6-е изд., испр. и доп. — М.: "Столетие", 1997 — упр. 2.061, с. 21):


При решении поставленной задачи прежде всего проанализируем заданное выражение. Для этого выполним его преобразование и получим ответ:


Таким образом, можно заметить, что числитель дроби-делимого, полученной после алгебраических преобразований в первых скобках, есть произведение ответа и числителя дроби-делителя, полученной после преобразований во вторых скобках. Следовательно, сам ответ, знаменатель дробей и числитель дроби-делителя могут быть сгенерированы произвольно, а на их основе строится дробь-делимое. Кроме того, для приведения выражения к виду, заданному в образце, необходимо и в первой, и во второй скобке числитель частично разделить на знаменатель.

Эти соображения и реализованы в приведенной ниже программе .

Program V;

Var F : Text;

    {Процедура, производящая начальные установки в формате LaTeXа}

  Procedure UST;

  Begin

   WriteLn(F, '\documentstyle[12pt,a4wide]{article}');

   WriteLn(F, '\topmargin-3cm');

   WriteLn(F, '\pagestyle{empty}');

   WriteLn(F, '\setlength{\textheight}{27cm}');

   WriteLn(F, '\setlength{\textwidth}{16cm}');

   WriteLn(F, '\newcommand{\ds}{\displaystyle}');

   WriteLn(F, '\begin{document}');

  END;

 Function Nod (X, Y : Integer) : Integer;

  Begin

   WHILE X <> Y Do

     IF X > Y THEN X := X — Y ELSE Y := Y — X;

   Nod := X

  END;

 Var  D, I, A, C, B, E, G, H, O, P, L, M, N, E1, G1, H1, O1, P1 : Integer;

      Vx2, J, Vsp : Integer;

      X, Znak : Char;

Begin

    Assign(F, 't:\rustex\ex_v.tex');

    ReWrite(F);

    UST;

    Randomize;

    For I := 1 To 5 Do

    Begin

      Repeat {пока в числителях дробей не будут взаимно простые числа}

   X := Chr(Ord('x') + Random(3)); {буква-переменная}

   {Получаем знаменатель — выражение вида Ax+B,

    A, B — целые, x — буква}

   A := 1 + Random(5);

   Repeat B := -4 + Random(9) Until B <> 0;

   Vsp := Nod(A, Abs(B));

   A := A Div Vsp; B := B Div Vsp;

   Repeat

   Repeat

   {Получаем числитель делителя после преобразования

    — выражение вида Lx^2+Mx+N,

    L, M, N — целые, x — буква}

   L := 1 + Random(5);

   Repeat M := -4 + Random(9) Until M <> 0;

   Repeat N := -4 + Random(9) Until N <> 0;

   Vsp := Nod(Nod(L, Abs(M)), Abs(N));

   L := L Div Vsp;

   M := M Div Vsp;

   N := N Div Vsp;

   {Получаем ответ — выражение вида Cx+D,

    C, D — целые, x — буква}

   C := A * (1 + Random(3));

   Repeat D := -4 + Random(9) Until D <> 0;

   {Формируем выражение-делитель. Получаем его в виде

    (Ex+G+(Hx^2+Ox+P)/(Ax+B))}

   Repeat E := -3 + Random(7) Until E <> 0;

   Repeat G := -3 + Random(7) Until G <> 0;

   H := L — A * E;

   O := M — (B * E + G * A);

   P := N — B * G;

   Until (H <> 0) And (O <> 0) And (P <> 0);

   If H < 0 Then Begin Znak := '-'; H := -H; O := -O; P := -P End

                Else Znak := '+';

   {Формируем на основе ответа и делителя выражение-делимое

    вида (E1x^2+G1x+(O1x+P1)/(Ax+B))}

   E1 := C * L Div A;

   Vx2 := D * L + M * C — E1 * B;

   Until Vx2 Mod A = 0;

   G1 := Vx2 Div A;

   O1 := D * M + N * C — G1 * B;

   P1 := D * N;

       Until (Nod(Abs(H), Nod(Abs(O), Abs(P))) = 1) And (Nod(Abs(O1), Abs(P1)) = 1);

   {выводим в файл очередное получившееся выражение,

    учитывая, что некоторые из коэффициенты могут быть нулями,

    коэффициенты, равные 1 или -1, не указываются и др.}

   Write(F, Chr(Ord('а') + I — 1), ')~$\ds\left(');

   If Abs(E1) <> 1 Then Write(F, E1)

                           Else If E1 = -1 Then Write(F, '-');

   Write(F, X, '^2');

   If G1 <> 0

   Then Begin

         If Abs(G1) <> 1 Then Begin

                                           If G1 > 0 Then Write(F, '+');

                                           Write(F, G1)

                                          End

                                 Else If G1 = -1

                                          Then Write(F, '-')

                                          Else Write(F, '+');

         Write(F, X);

        End;

   If O1 <> 0

   Then Begin

               If O1 < 0

               Then Begin Write(F, '-'); O1 := -O1; P1 := -P1 End

               Else Write(F, '+');

               Write(F, '\frac{');

               If O1 <> 1 Then Write(F, O1);

               Write(F, X);

               If P1 <> 0

               Then Begin If P1 > 0 Then Write(F, '+');

                              Write(F, P1)

                    End;

               Write(F, '}');

        End

   Else If P1 <> 0

        Then Begin If P1 < 0

                           Then Write(F, '-')

                           Else Write(F, '+');

                           Write(F, '\frac{', Abs(P1), '}');

                 End;

   If (O1 <> 0) Or (P1 <> 0)

   Then Begin

          Write(F, '{');

          If A <> 1 Then Write(F, A);

          Write(F, X);

          If B > 0 Then Write(F, '+');

          Write(F, B, '}')

        End;

   Write(F, '\right):\left(');

   If Abs(E) <> 1 Then  Write(F, E)

                      Else If E = -1 Then Write(F, '-');

   Write(F, X);

   If G > 0 Then Write(F, '+');

   Write(F, G);

   Write(F, Znak, '\frac{');

   If H <> 1 Then Write(F, H);

   Write(F, X, '^2');

   If O > 0 Then Write(F, '+');

   If Abs(O) <> 1 Then Write(F, O)

                      Else If O = -1 Then Write(F, '-');

   Write(F, X);

   If P > 0 Then Write(F, '+');

   Write(F, P, '}{');

   If A <> 1 Then Write(F, A);

   Write(F, X);

   If B > 0 Then Write(F, '+');

   WriteLn(F, B, '}\right)$;');

   WriteLn(F)

    End;

    WriteLn(F);

    WriteLn(F, '\end{document}');

    Flush(F);

    Close(F)

End.

Вот один из результатов её работы:

\documentstyle[12pt,a4wide]{article}

\topmargin-3cm

\pagestyle{empty}

\setlength{\textheight}{27cm}

\setlength{\textwidth}{16cm}

\newcommand{\ds}{\displaystyle}

\begin{document}

а)~$\ds\left(6z^2+z+\frac{13z+6}{3z-4}\right):

\left(-z-2+\frac{5z^2-z-6}{3z-4}\right)$;

б)~$\ds\left(12y^2+20y+\frac{19y-1}{y-1}\right):

\left(2y+3+\frac{2y^2+3y+4}{y-1}\right)$;

в)~$\ds\left(4x^2-2x-\frac{8x+3}{x+1}\right):

\left(-x-1+\frac{3x^2+6x+2}{x+1}\right)$;

г)~$\ds\left(12x^2-22x+\frac{39x+1}{x+2}\right):

\left(-2x+3+\frac{6x^2+3x-7}{x+2}\right)$;

д)~$\ds\left(z^2+2z-\frac{2z-9}{z-2}\right):

\left(-2z+2+\frac{3z^2-9z+7}{z-2}\right)$;

\end{document}

А вот что получено после обработки этого документа с помощью LaTeX:


Итак, программа значительно увеличила количество заданий, отвечающих заданному образцу. Однако следует заметить, — в этот вариант программы не заложена гарантия, что все сгенерированные задания будут различны. Для подобного рода гарантий необходимо предпринять дополнительные усилия.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.comp-science.ru/



      ©2010