Курсовая: Вычисления определенного интеграла с помощью ф. – лы Симпсона на компьютере Курсовая: Вычисления определенного интеграла с помощью ф. – лы Симпсона на компьютере
Курсовая: Вычисления определенного интеграла с помощью ф. – лы Симпсона на компьютере РЕФЕРАТЫ РЕКОМЕНДУЕМ  
 
Тема
 • Главная
 • Авиация
 • Астрономия
 • Безопасность жизнедеятельности
 • Биографии
 • Бухгалтерия и аудит
 • География
 • Геология
 • Животные
 • Иностранный язык
 • Искусство
 • История
 • Кулинария
 • Культурология
 • Лингвистика
 • Литература
 • Логистика
 • Математика
 • Машиностроение
 • Медицина
 • Менеджмент
 • Металлургия
 • Музыка
 • Педагогика
 • Политология
 • Право
 • Программирование
 • Психология
 • Реклама
 • Социология
 • Страноведение
 • Транспорт
 • Физика
 • Философия
 • Химия
 • Ценные бумаги
 • Экономика
 • Естествознание




Курсовая: Вычисления определенного интеграла с помощью ф. – лы Симпсона на компьютере

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

КУРСОВАЯ РАБОТА

«Программа приближенного вычисления определенного интеграла с помощью ф – лы Симпсона на компьютере»

Выполнил:

 студент ф – та ЭОУС – 1 – 12

Валюгин А. С.

Принял:

Зоткин С. П.

Москва 2001

1. Введение

Определенный интеграл от функции, имеющей неэлементарную первообразную, можно вычислить с помощью той или иной приближенной формулы. Для решения этой задачи на компьютере, среди прочих, можно воспользоваться формулами прямоугольников, трапеций или формулой Симпсона. В данной работе рассматривается именно последняя.

Рассмотрим функцию y = f(x). Будем считать, что на отрезке [a, b] она положительна и непрерывна. Найдем площадь криволинейной трапеции aABb (рис. 1).


рис. 1

Для этого разделим отрезок [a, b] точкой  c = (a + b) / 2 пополам и в точке C(c, f(c)) проведем касательную к линии y = f(x). После этого разделим [a, b]  точками  p и q на 3 равные части и проведем через них прямые x = p и x = q. Пусть P и Q – точки пересечения этих прямых с касательной. Соединив A с P и B с Q, получим 3 прямолинейные трапеции aAPp,  pPQq, qQBb. Тогда площадь трапеции aABb можно приближенно посчитать по следующей формуле

I » (aA + pP) / 2 * h + (pP + qQ) / 2 * h + (qQ + bB) / 2 * h, где h = (b – a) / 3.

Откуда получаем

I » (b – a) / 6 * (aA + 2 * (pP + qQ) + bB)

заметим, что aA = f(a), bB = f(b), а  pP + qQ = 2 * f(c), в итоге получаем малую фор – лу Симпсона

I » (b – a) / 6 * (f(a) + 4 * f(c) + f(b))    (1)


           

Малая формула Симпсона дает интеграл с хорошей точностью, когда график подинтегральной функции мало изогнут, в случаях же, когда дана более сложная функция малая формула Симпсона непригодна. Тогда, чтобы посчитать интеграл заданной функции нужно разбить отрезок [a, b] на n частей и к каждому из отрезков применить формулу (1). После указанных выше действий получится “большая” формула Симпсона, которая имеет вид,

I » h / 3 * (Yкр + 2 * Yнеч + 4 * Yчет)    (2)
           

 

где Yкр = y1 + yn, Yнеч = y3 + y5 + … + yn – 1,  Yчет = y2 + y4 + … + yn – 2, а h = (b – a) / n.

        Задача. Пусть нужно проинтегрировать функцию f(x) = x³(x-5)² на отрезке [0, 6] (рис. 2). На этом отрезке функция непрерывна и принимает только неотрицательные значения, т. е. знакопостоянна.


рис. 2

Для выполнения поставленной задачи составлена нижеописанная программа,  приближенно вычисляющая определенный интеграл с помощью формулы Симпсона. Программа состоит из трех функций main, f и integral. Функция main вызывает функцию integral для вычисления интеграла и распечатывает на экране результат. Функция f принимает аргумент x типа float и возвращает значение интегрируемой функции в этой точке. Integral – основная функция программы: она выполняет все вычисления, связанные с нахождением определенного интеграла. Integral принимает четыре параметра: пределы интегрирования типа float, допустимую относительную ошибку типа float и указатель на интегрируемую функцию. Вычисления выполняются до тех пор, пока относительная ошибка, вычисляемая по формуле

 

| (In/2 – In) / In | ,

где In интеграл при числе разбиений n, не будет меньше требуемой. Например, допустимая относительная ошибка e = 0.02 это значит, что максимальная погрешность в вычислениях будет не больше, чем In * e = 0.02 * In.  Функция реализована с экономией вычислений, т. е. учитывается, что Yкр постоянная, а Yнеч = Yнеч + Yчет, поэтому эти значения вычисляются единожды. Высокая точность и скорость вычисления делают использование программы на основе формулы Симпсона более желательным при приближенном вычислении интегралов, чем использование программ на основе формулы трапеции или метода прямоугольников.

            Ниже предлагается блок – схема, спецификации, листинг и ручной счет программы на примере поставленной выше задачи. Блок – схема позволяет отследить и понять особенности алгоритма программы, спецификации дают представление о назначении каждой переменной в основной функции integral, листинг -  исходный код работающей программы с комментариями, а ручной счет предоставляет возможность проанализировать результаты выполнения программы.

2. Блок – схема программы




                                                                                                          ДА




                                                                          НЕТ



                                                                                                                      

3. Спецификации

Имя переменной
Тип
Назначение
n
int
Число разбиений отрезка [a, b]
i
int
Счетчик циклов
a
float
Нижний предел интегрирования
b
float
Верхний предел интегрирования
h
float
Шаг разбиения отрезка
e
float
Допустимая относительная ошибка
f
float (*)
Указатель на интегрируемую фун - цию
s_ab
float
Сумма значений фун – ции в точках a и b
s_even
float
Сумма значений фун – ции в нечетных точках
s_odd
float
Сумма значений фун – ции в четных точках
s_res
float
Текущий результат интегрирования
s_pres
float
Предыдущий результат интегрирования

4. Листинг программы

#include <stdio.h> 

#include <math.h>

/* Прототип фун – ции, вычисляющей интеграл */

float integral(float, float, float, float (*)(float));

/* Прототип фун – ции, задающей интегрируемую фун – цию */

float f(float);

main()

{

            float result;

            result = integral(0, 6, .1, f);

            printf("%f", result);

            return 0;

}

/* Реализация фун – ции, задающей интегрируемую фун – цию */

float f(float x)

{

            /* Функция f(x) = x³(x-5)²  */

            return pow(x, 3) * pow(x - 5, 2);

}

/* Реализация фун – ции, вычисляющей интеграл */

float integral(float a, float b, float e, float (*f)(float))

{

            int n = 4, i; /* Начальное число разбиений 4 */

            float s_ab = f(a) + f(b); /* Сумма значений фун – ции в a и b */

float h = (b – a) / n; /* Вычисляем шаг */

            float s_even = 0,  s_odd;

            float s_res = 0, s_pres;

            /* Сумма значений фун – ции в нечетных точках */

            for (i = 2; i < n; i += 2) {

                       s_even += f(a + i * h);

}

            do {

                       s_odd = 0;

                       s_pres = s_res;

                       

/* Сумма значений фун – ции в четных точках */

            for (i = 1; i < n; i += 2) {

                                   s_odd += f(a + i * h);

}

            /* Подсчет результата */

                       s_res = h / 3 * (s_ab + 2 * s_even + 4 * s_odd);

/* Избегаем деления на ноль */

                       if (s_res == 0) s_res = e;

                       s_even += s_odd;

                       n *= 2;

                       h /= 2;

} while (fabs((s_pres - s_res) / s_res) > e);/* Выполнять до тех  пор, пока результат не будет удовлетворять допустимой ошибке */

return fabs(s_res); /* Возвращаем результат */

}

                                                                          

5. Ручной счет

Таблица константных значений для n = 8

Имя переменной
Значение
a
0
b
6
e
.1
s_ab
216
h
.75

Подсчет s_even

i
a + i * h
f(a + i * h)
s_even
2
1.5
41.34375
41.34375
4
3
108
149.34375
6
4.5
22.78125
172.125

Подсчет s_odd

i
a + i * h
f(a + i * h)
s_odd
1
.75
7.62012
7.62012
3
2.25
86.14158
93.7617
5
3.75
82.3973
176.159
7
5.25
9.044
185.203

Подсчет s_res

ò f(x) dx
s_res = h / 3 * (s_ab + 2 * s_even + 4 * s_odd)
Абсолютная ошибка
324
325.266
1.266


      ©2010