Поверхности второго порядка Поверхности второго порядка
Поверхности второго порядка РЕФЕРАТЫ РЕКОМЕНДУЕМ  
 
Тема
 • Главная
 • Авиация
 • Астрономия
 • Безопасность жизнедеятельности
 • Биографии
 • Бухгалтерия и аудит
 • География
 • Геология
 • Животные
 • Иностранный язык
 • Искусство
 • История
 • Кулинария
 • Культурология
 • Лингвистика
 • Литература
 • Логистика
 • Математика
 • Машиностроение
 • Медицина
 • Менеджмент
 • Металлургия
 • Музыка
 • Педагогика
 • Политология
 • Право
 • Программирование
 • Психология
 • Реклама
 • Социология
 • Страноведение
 • Транспорт
 • Физика
 • Философия
 • Химия
 • Ценные бумаги
 • Экономика
 • Естествознание




Поверхности второго порядка


Поверхности второго порядка
Поверхности второго порядка – это поверхности, которые в прямоугольной системе координат определяются алгебраическими уравнениями второй степени.
Эллипсоид.
Эллипсоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением:
(1) Уравнение (1) называется
каноническим уравнением эллипсоида. Установим геометрический вид эллипсоида. Для этого рассмотрим сечения данного эллипсоида плоскостями, параллельными плоскости
Oxy. Каждая из таких плоскостей определяется уравнением вида
z=h
, где
h
любое число, а линия, которая получается в сечении, определяется двумя уравнениями
(2)
Исследуем уравнения (2) при различных значениях
h
.
Если
>
c
(c>0), то и уравнения (2) определяют мнимый эллипс, т. е. точек пересечения плоскости
z=h
с данным эллипсоидом не существует.
Если
, то и линия (2) вырождается в точки (0; 0; +
c
) и (0; 0; -
c
) (плоскости касаются эллипсоида).
Если
, то уравнения (2) можно представить в виде
откуда следует, что плоскость
z=h
пересекает эллипсоид по эллипсу с полуосями и
. При уменьшении значения
и
увеличиваются и достигают своих наибольших значений при
, т. е. в сечении эллипсоида координатной плоскостью
Oxy
получается самый большой эллипс с полуосями и
.
Аналогичная картина получается и при пересечении данной поверхности плоскостями, параллельными координатным плоскостям
Oxz
и
Oyz
.
Таким образом, рассмотренные сечения позволяют изобразить эллипсоид как замкнутую овальную поверхность (рис. 156). Величины
a, b, c
называются
полуосями
эллипсоида. В случае
a=b=c
эллипсоид является
сферой.
2. Однополосный гиперболоид.
Однополосным гиперболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением (3) Уравнение (3) называется каноническим уравнением однополосного гиперболоида. Установим вид поверхности (3). Для этого рассмотрим сечение ее координатными плоскостями
Oxy (y=0) и Oyx (x=0).
Получаем соответственно уравнения
и
из которых следует, что в сечениях получаются гиперболы. Теперь рассмотрим сечения данного гиперболоида плоскостями z=h, параллельными координатной плоскости
Oxy.
Линия, получающаяся в сечении, определяется уравнениями
или (4)
из которых следует, что плоскость z=h пересекает гиперболоид по эллипсу с полуосями и
,
достигающими своих наименьших значений при h=0, т.е. в сечении данного гиперболоида координатной осью Oxy получается самый маленький эллипс с полуосями a*=a и b*=b. При бесконечном возрастании величины a* и b* возрастают бесконечно.
Таким образом, рассмотренные сечения позволяют изобразить однополосный гиперболоид в виде бесконечной трубки, бесконечно расширяющейся по мере удаления (по обе стороны) от плоскости Oxy.
Величины a, b, c называются полуосями однополосного гиперболоида.
Двуполостный гиперболоид. Двуполостным гиперболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением (5) Уравнение (5) называется каноническим уравнением двуполостного гиперболоида. Установим геометрический вид поверхности (5). Для этого рассмотрим его сечения координатными плоскостями Oxy и Oyz. Получаем соответственно уравнения и
из которых следует, что в сечениях получаются гиперболы. Теперь рассмотрим сечения данного гиперболоида плоскостями z=h, параллельными координатной плоскости Oxy. Линия, полученная в сечении, определяется уравнениями или (6)
из которых следует, что при
>c (c>0) плоскость z=h пересекает гиперболоид по эллипсу с полуосями и
. При увеличении величины a* и b* тоже увеличиваются.
При уравнениям (6) удовлетворяют координаты только двух точек: (0;0;+с) и (0;0;-с) (плоскости касаются данной поверхности).
При уравнения (6) определяют мнимый эллипс, т.е. точек пересечения плоскости z=h с данным гиперболоидом не существует.
Величина a, b и c называются полуосями двуполостного гиперболоида.
Эллиптический параболоид. Эллиптическим параболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением (7)
где p>0 и q>0. Уравнение (7) называется каноническим уравнением эллиптического параболоида. Рассмотрим сечения данной поверхности координатными плоскостями Oxy и Oyz. Получаем соответственно уравнения и
из которых следует, что в сечениях получаются параболы, симметричные относительно оси Oz, с вершинами в начале координат.
Теперь рассмотрим сечения данного параболоида плоскостями z=h, параллельными координатной плоскости Oxy. Линия, получающаяся в сечении, определяется уравнениями или (8)
из которых следует, что при плоскость z=h пересекает эллиптический параболоид по эллипсу с полуосями и
. При увеличении h величины a и b тоже увеличиваются; при h=0 эллипс вырождается в точку (плоскость z=0 касается данного гиперболоида). При h<0 уравнения (8) определяют мнимый эллипс, т.е. точек пересечения плоскости z=h с данным гиперболоидом нет.
Таким образом, рассмотренные сечения позволяют изобразить эллиптический параболоид в виде бесконечно выпуклой чаши.
Точка (0;0;0) называется вершиной параболоида; числа p и q – его параметрами.
В случае p=q уравнение (8) определяет окружность с центром на оси Oz, т.е. эллиптический параболоид можно рассматривать как поверхность, образованную вращением параболы вокруг её оси (параболоид вращения).
Гиперболический параболоид. Гиперболическим параболоидом называется поверхность, которая в некоторой прямоугольной системе координат, определяется уравнением (9)
где p>0, q>0. Уравнение (9) называется каноническим уравнением гиперболического параболоида. Рассмотрим сечение параболоида плоскостью Oxz (y=0). Получаем уравнение (10)
из которых следует, что в сечении получается парабола, направленная вверх, симметричная относительно оси Oz, с вершиной в начале координат. В сечениях поверхности плоскостями, параллельными плоскости Oxz (y=h), получаются так же направленные вверх параболы.
рассмотрим сечение данного параболоида плоскостью Oyz (x=0).
Получаем уравнение
из которых следует, что и в этом случае в сечении получается парабола, но теперь направленная вниз, симметричная относительно оси Oz, с вершиной в начале координат. Рассмотрев сечения параболоида плоскостями, параллельными плоскости Oyz (x=h), получим уравнения
из которых следует, что при любом h в сечении получается парабола, направленная вниз, а вершина её лежит на параболе, определённой уравнениями (10).
Рассмотрим сечения параболоида плоскостями z=h, параллельными плоскости Oxy . получим уравнения или
из которых следует, что при h>0 в сечении получаются гиперболы, пересекающие плоскость Oxy; при h<0 – гиперболы, пересекающие плоскости Oyz; при h=0 – гипербола вырождается в пару пересекающихся прямых и
точка (0;0;0) называется вершиной параболоида; числа p и q – его параметрами.
6. Конус второго порядка. Конусом второго порядка называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением (11)
Рассмотрим геометрические свойства конуса. В сечение этой поверхности плоскостью Oxy (y=0) получаем линию
распадающуюся на две пересекающиеся прямые и
Аналогично, в сечении конуса плоскостью Oyz (x=0) также получаются две пересекающиеся прямые и
Рассмотрим сечения поверхности плоскостями z=h, параллельными плоскости Oxy. Получим или
из которых следует, что при h>0 и h<0 в сечениях получаются эллипсы с полуосями . При увеличении абсолютной величины h полуоси a* и b* также увеличиваются.
При h=0 линия пересечения поверхности с плоскостью z=h вырождается в точку (0;0;0).
Cписок использованной литературы:
1.Шипачёв В.С.:”Высшая математика”
Уравнение линии пересечения поверхностей шара с поверхностью конуса с вершиной вне. Определить вид поверхности и построить их используя метод параллельных сечений. Перечислите линии второго порядка на плоскости изобразите их схематически. Исследование поверхностей второго порядка методом параллельных сечений. Аналитический расчёт линии пересечения конуса с плоскостью. Исследование методом сечений поверхности второго порядка. Исследовать методом сечения поверхность второго порядка. Поверхности второго порядка метод параллельных сечений. Алгебраические линии и поверхности второго порядка. Определить тип поверхности второго порядка центр. Как изобразить тип поверхности второго порядка. Метод сечений пговерхностей второго порядка. Определить вид поверхности второго порядка. Метод сечений поверхности второго порядка. Поверхности второго порядка решение задач.

      ©2010